

The Present and Future Real-Time Alerts from AMON

TeVPA

August 9th 2017

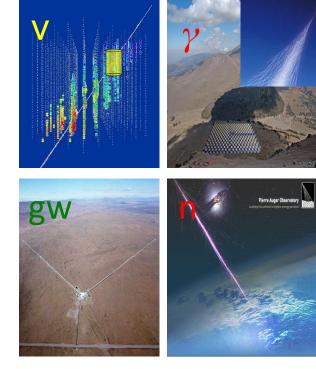
Jimmy DeLaunay AMON team

ŃSF

What and who is AMON

• What's being/been done

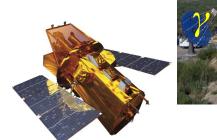
• Upcoming AMON γ - v alerts


Outline

AMON searches for multimessenger transients using the messenger particles of all four fundamental forces

Triggering Observatories

- Provide sub-threshold candidate events to AMON in real time
- They have large FOV and high duty cycles

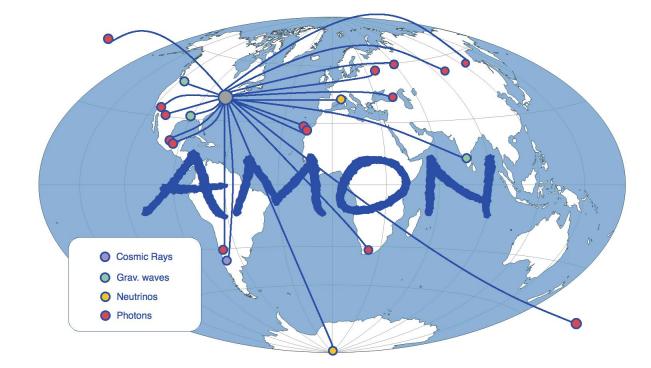


AMON

- Seeks coincidences in time and space
- Generates alerts, broadcasts and archives
- Enables archival analyses
- Pass-through of above-threshold events (e.g. IceCube HESE)

Follow-up Observatories

- Receive and respond to AMON alerts
- Provide afterglow or delayed feedback on potential multimessenger transients



x-ray, UV, optical

<u>Triggering</u>: IceCube, ANTARES, Pierre Auger, HAWC, VERITAS, FACT, Swift BAT, Fermi LAT & GBM, LIGO-Virgo*

Follow-up: Swift XRT & UVOT, VERITAS, FACT, MASTER, LCOGT

* Ongoing MoU negotiations

More observatories in talks about joining AMON

For info about joining AMON: <u>https://sites.psu.edu/amon/join/</u>

 Sent via cor Public Alerts High Er Extrem 	like events in April 201 nnection to GCN (γ-ray Co s (receivable by all) nergy Starting Events (HE ely High Energy (EHE) c.nasa.gov/gcn/amon.html - AMC	oordinate Network) ESE)	
Stream	HESE	EHE	
Description	Starting tracks	Very high energy through going tracks	
Angular Error	0.4° - 1.6°	0.1° - 0.4°	
Rate	~ 4/year	~ 4 - 6 / year	

Follow-up

Alert name/type	160814A/HESE	160806A/EHE	160731A/HESE	160731A/EHE	I 60427A/HESE	
RA/DEC (rev1) RA/DEC (rev2)	[199.31°, -32.02°] [200.25°, -32.35°]			[215.09°, -0.42°] [214.54°, -0.33°]	[239.66°, +6.85°] [240.57°, +9.34°]	
Resolution	0.48° (50%), 1.49° (90%)	0.11° (50%)	0.42° (50%),1.23° (90%) 0.35° (50%), 0.75° (90%)	0.17° (50%), ~0.8° (90%) 0.35° (50%), 0.75° (90%)	I.6° (50%), 8.9° (90%) 0.6° (90%)	
Energy	?	~62 TeV	~130 TeV	~130 TeV	~150 TeV	
ST or Signalness	0.12	0.28	0.91	0.85	0.92	
Latency: Event t0 to GCN alert sending	42 s	37 s	41 s	54 s	81 s	
Followups						
		Fermi LAT HAWC H.E.S.S INTEGRAL	Konus-Wind		Swift VERITAS	

For follow-up analysis details see Azadeh's talk later this session at 4:45

Archival Analyses

- Fermi LAT IC40 (AK et al, PoS(ICRC2015)786 (2015))
- VERITAS blazars IC40 (C. F. Turley et al., APJ 833, 117 (2016))
- Fermi LAT IC40/59 (C. F. Turley et al., in preparation)
 - See Colin Turley's talk Multi-messenger session Friday 2:45

Archival Analyses

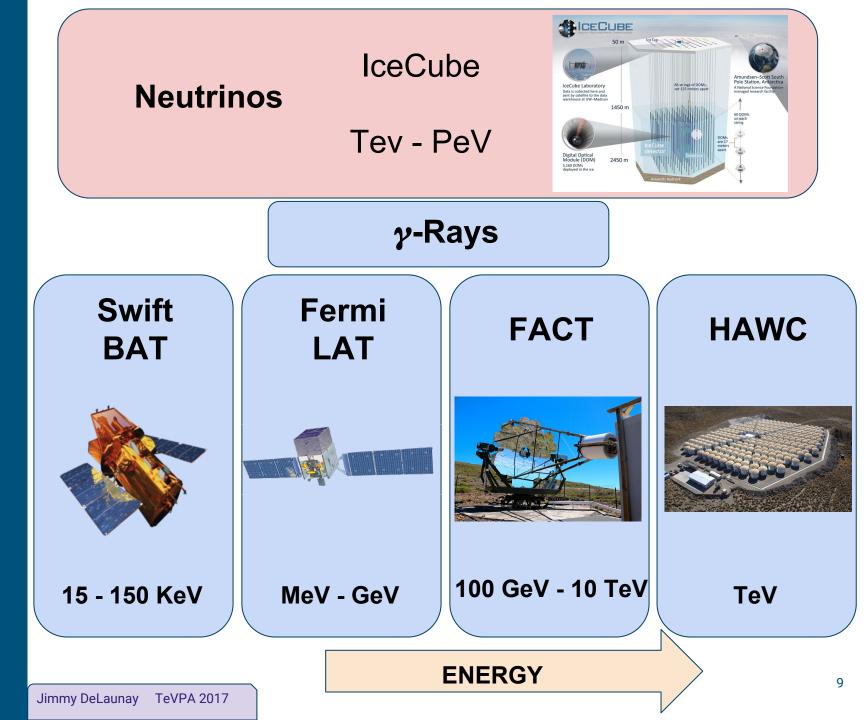
- Fermi LAT IC40 (AK et al, PoS(ICRC2015)786 (2015))
- VERITAS blazars IC40 (C. F. Turley et al., APJ 833, 117 (2016))
- Fermi LAT IC40/59 (C. F. Turley et al., in preparation)
 - See Colin Turley's talk Multi-messenger session Friday 2:45

Real Time Alerts

• Real-Time γ - ν coincident alerts coming soon!

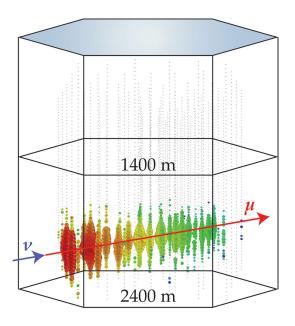
• To a follow up observatory near you

• AMON infrastructure ready to go


- "Pass-through" alerts successfully brokered
- Preliminary analyses running in real-time on scrambled/fake data

What needs to happen

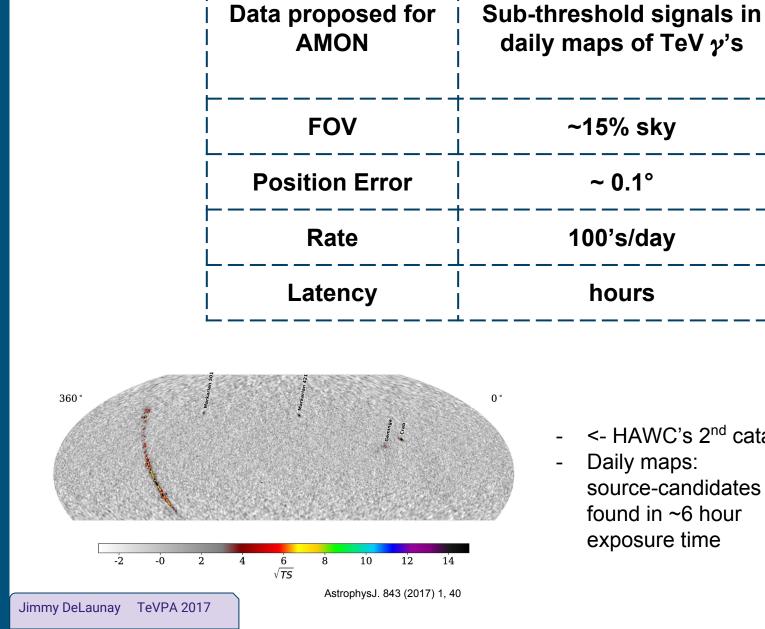
- Cross-collaboration tuning and approval of analyses
- Pull the "un-scramble" lever



IceCube

Data proposed for AMON	Through-Going Tracks				
FOV	All Sky				
Position Error	~ 1°				
Rate	100's/day				
Latency	~ 1 min				

Through-going track



Credit: Illustration: APS/<u>Joan</u> <u>Tycko;</u> Neutrino event: IceCube

HAWC

- <- HAWC's 2nd catalog
- Daily maps: source-candidates found in ~6 hour exposure time

~15% sky

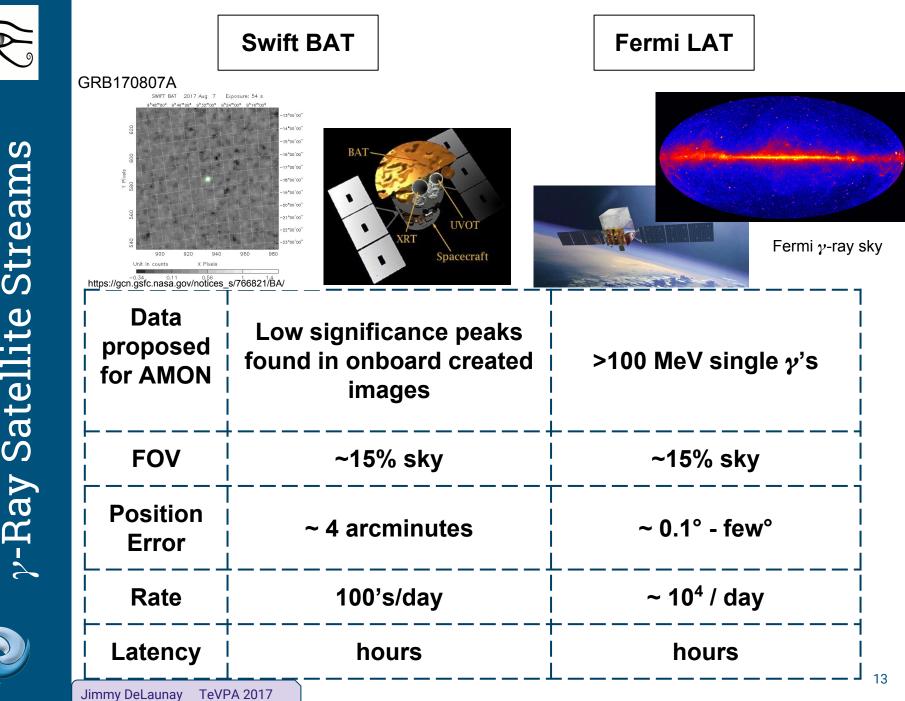
~ 0.1°

100's/day

hours

11

Streams


 γ -Ray

FACT

FACT Preliminary 10² Tev γ -flares from a Data proposed few bright sources for AMON in 20 minute bins 10 1 FOV Small 20 5 10 15 25 Flux > 750 GeV [10⁻¹¹/cm²/s] Excess Flux seen above **Position Error Known locations** "normal" flux in 20 minute bins Rate **Defining a flare** Right of the Gaussian Latency ~ hour curve is considered a Flare

Work done by Daniela Dorner with the FACT collaboration

- AMON has successfully brokered high-energy IceCube alerts to the follow-up community
- Infrastructure is up and running and ready to go for coincident searches
- Coincident analyses are in the works
- Keep your eyes open for these current and future alerts

We're always interested in new partners to join AMON

Feel free to contact us about joining, receiving alerts, analyses, or anything else!

For info about AMON see https://sites.psu.edu/amon

Summary

Backup Slides

Swift BAT

BAT UVOT XRT Spacecraft	Watching the Rate Trigge	e hard X-ray sky for for su er Make image, Search unknown sources	64s pass by		
	snr	> 6.5 0	snr > 3.8σ		
• FOV ~2 sr	Trigger Type	Above-Threshold	SubSub-Threshold		
 15 - 350 keV Coded Imager Performs FFT to create image Archival data available from end of 2004 	Rate	~100 per year	~500/day (~10 ⁵ /year)		
	Time from event to GCN transmission	seconds	hours		
	90% containment	1 - 3 arcmin BAT SubSub Latency For 3 Week	4 arcmin		
	3500 3000 2500 2500 51500 1500 500 0 0 2	50% received in under 5 4 6 8 10 Latency (hours)	5 hours 12 14 16		

- Pair-production high energy photon detector
- 20 MeV >300 GeV
- FOV 2.4 sr
- Angular Resolution (on-axis)
 - < 3.5° (100 MeV)
 - < 0.15° (>10 GeV)
- Taking data since 2008

AMON Sub-Threshold Stream of LAT data

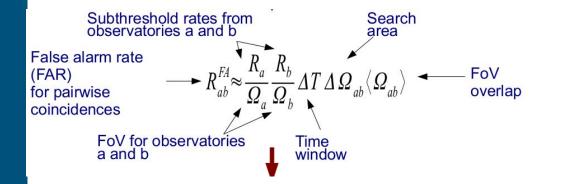
- Retrieved from LAT weekly map file, from LAT data servers
- All single photons E>100 MeV
- Very high rate, ~25 per minute (~10⁷ per year)
- Angular Resolution (68% containment of PSF)
 - 100 MeV, 2° 9°
 - \circ 1 GeV, $\,$ 0.5° 2° $\,$
 - >10 GeV, < .4°
 - Calculated from King Function PSF as a function of incoming angle and energy

AMON Alerts

VOEvent format

- Structured in XML format with simple schema
- Easily interpreted by software, to be read by robotic telescopes
- Already used by much of the astronomical community

• Sent out to AMON partners through AMON-GCN connection


- Very fast delivery
- Some day in the future, will be sent out publicly

Content of AMON Alert

- What
 - id number, stream number, revision number
 - False alarm rate, number of events, duration of events in alert
- WhereWhen
 - Time, position of best fit, positional error

Astrop.Phys. Vol. 45, 56–70, 2013

FAR per year from clustering analysis

ΔT =100 s and 3 σ spatial window

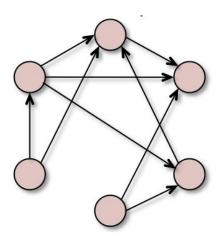
		IceCube	ANTARES	LIGO-Virgo	Auger	BAT	GBM	LAT	HAWC
(a) Single	Above thresh.	~0	~0	~0	~0	~100	~250	~10	~10
streams	Subthreshold	8.8×10^4	2.9×10^4	$3.2 imes 10^3$	$2.4 imes 10^5$	1.4×10^5	$3.1 imes 10^2$	$3.9 imes 10^4$	2.6 × 10
IceCube ANTARES LIGO-Virgo	IceCube	30	1.5	35	1.8	11	10	24	6.5
	ANTARES	1.5	0.5	12	1.1	0.7	3.5	7.1	0.6
	LIGO-Virgo	35	12	N/A	8.4	53	0.6	16	10
(b) Pair-	Auger ^a	1.8	1.1	8.4	20	2.9	2.5	5.9	1.5
wise FPR	BAT	11	0.7	53	2.9	N/A	16	32	3.3
	GBM	10	3.5	0.6	2.5	16	N/A	5.0	3.2
	LAT	24	7.1	16	5.9	32	5.0	N/A	6.8
	HAWC	6.5	0.6	10	1.5	3.3	3.2	6.8	N/A
	GRB lt. curve ^b	0.071	0.003	0.16	-	0.0004	0.08	0.13	0.019
	SNe lt. curve ^b	1.5	0.07	3.4	-	0.009	1.6	2.7	0.4
(c) High	3-fold coinc.	0.15	0.03	0.31	0.64	0.12	0.09	0.40	0.08
significance	3-fold coinc ^a	0.10	0.02	0.15	0.06	0.08	0.04	0.23	0.04
	High-sig. EM ^c	0.015	0.002	0.045	0.044	0.010	0.014	0.039	0.005
	PBH search ^d	0.13	0.01	-	0.21	-	-	-	0.35

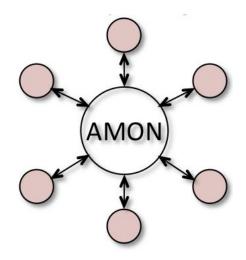
- Founded and hosted at Penn State
 - Internal initial funding
- Official NSF funded project as of 2014

AMON development and advisory team Penn State

A. Ashtekar^{1,3}, S. Coutu^{1,2,3}, D. Cowen^{1,2,3}, J. DeLaunay¹, A. Falcone^{2,3}, G. Filippatos¹, D. Fox^{2,3}, A. Keivani^{1,3}, P. Mészáros^{1,2,3}, C. Messick¹, M. Mostafá^{1,3}, K. Muraze^{1,3}, C. Hanna^{1,3}, F. Oikonomou^{1,3}, P. Raghavan^{4,5}, P. Sommers, G. Te**š**ić^{1,3}, M. Toomey^{1,2}, C. Turley², A. Weinrich^{1,4}

¹Department of Physics ²Department of Astronomy and Astrophysics ³Institute for Gravitation and the Cosmos ⁴Computer Science and Engineering ⁵Institute for CyberScience


Others


S. Barthelmy¹, I. Bartos², F. Feroz³, M. Smith⁴, I. Taboada⁵ ¹NASA GSFC ²Columbia University, Dept of Physics ³Cambridge University ⁴NASA JPL ⁵Georgia Institute of Technology

- Difficulties with past searches for high energy astrophysical multimessenger transients
 - Searches have been bilateral, uni-directional
 - One observatory triggers follow-up with other observatory
 - "Above Threshold" non-EM detections are rare
 - Astrophysical signals are buried in "Sub Threshold" detections
- What AMON can offer
 - Create a central hub to unify search and follow-up efforts
 - More triggering observatories reduces background and allows for diving deeper into the noise
 - Enables fast alerts to more observatories for follow-up

