Searching for Optical Counterparts for IceCube Neutrinos Using the Dark Energy Camera

Keith Bechtol (LSST) on behalf of the DES Collaboration TeV Particle Astrophysics 17 August 2017

DES Y1Cosmology Results

Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology Drlica-Wagner et al. 2017

Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies Hoyle et al. 2017

Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues Zuntz et al. 2017

Dark Energy Survey Year 1 Results: The Impact of Galaxy Neighbours on Weak Lensing Cosmology with im3shape Samuroff et al. 2017

Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map Chang et al. 2017

Dark Energy Survey Year 1 Results: Galaxy-Galaxy Lensing Prat et al. 2017

Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear Troxel et al. 2017

Dark Energy Survey Year 1 Results: Galaxy clustering for combined probes Elvin-Poole et al. 2017

Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses Krause et al. 2017

Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing DES Collaboration 2017

See talk by Elisabeth Krause Wednesday morning

Origin of Diffuse TeV-PeV Astrophysical Neutrino Flux??

- ✓ Isotropy points to a dominant extragalactic contribution
- Lack of detected spatial and/or temporal structure implies that the sources are numerous and individually faint / diffuse
- Absence of correlation with gamma-ray source catalogs, together with high neutrino intensity relative to extragalactic gamma-ray background, suggests that the sources are opaque to gamma-ray emission
- Observed neutrino intensity requires substantial non-thermal energy budget for the source population(s)

This leaves a few interesting possibilities...

Explosive Optical Transients: Supernova-GRB Connection

Senno, Murase, & Meszaros 2016

Choked Jet

Shock Breakout

GRB

Choked Jet

Meszaros & Waxman 2001 Ando & Beacom 2005 Senno, Murase, & Meszaros 2016

Low luminosity GRB

Murase et al. 2006 Murase & loka 2013 Tamborra & Ando 2016

Prompt Neutrino Emission Directional (1-100 sec)

Explosive Optical Transients: Supernova-GRB Connection

Opportunity to constrain bulk Lorentz factor

+ cosmic-ray energetics

Explosive Optical Transients: Interactions with Circumstellar Wind

Interactions with dense circumstellar wind

(e.g., type IIn SN)

Murase et al. 2011 Katz, Sapir, & Waxman 2011 Zirakashvili & Ptuskin 2016 Petropolou et al. 2017

 Delayed Neutrino Emission
 Isotropic (days to months) See talks by Raffaella Margutti, Kohta Murase, Maria Petropoulou

Highlights from Previous Searches

Palomar Transient Factory (PTF) observations triggered by IceCube neutrino doublet

NEW REF **SUB SDSS** W

Type IIn SN "PTF12csy" at z = 0.0684

...but explosion time at least 158 days prior to neutrino event based on detections in Pan-STARRS routine survey imaging

Highlights from Previous Searches

No plausible transient optical counterpart identified

Highlights from Previous Searches

Coincident neutrino events can be used to estimate source redshift

(distinct feature from single-event triggers)

Rapid Progress in Wide-field Time-Domain Optical Imaging Surveys

All-Sky Automated Survey for Supernovae (ASAS-SN) r ~ 17

Zwicky Transient Factory (ZTF, 2018) $r \sim 21$

Large Synoptic Survey Telescope (LSST, ~2022)

Photon Collecting Power

Etendue = Field of View × Effective Aperture (× Efficiency)

Etendue measures to how fast a telescope + camera can map the sky

Volumetric Survey Speed

Shaded regions indicate required telescope aperture for spectroscopic follow-up (Example for luminosity $M_V = 19$ mag, typical of a type Ia SN)

DES Multimessenger Program

15

Search for optical counterparts to the first detected gravitational wave events

See also Kessler et al. 2015, arXiv:1507.05137 Anis et al. 2016, arXiv:1602.04199 Cowperthwaite 2016, arXiv:1606.04538

Soares-Santos et al. 2016, arXiv:1602.04198

Upper bounds from an untriggered search for kilonovae in DES supernova fields

16

- Wide-field imaging matched to the angular resolution of track events
- Imaging depth to efficiently detect sources at moderate redshifts
- All-sky coverage (+ template images)
- Observing cadence matched to optical emission timescale
- Control rate of unassociated optical transients passing selection

IceCube 2014, arXiv:1406.6757

Angular	Cascade	Track			
Resolution	~15 deg	~1 deg @ 1 TeV ~0.4 deg @ 100 TeV			

Single DECam pointing

- Wide-field imaging matched to the angular resolution of track events
- Imaging depth to efficiently detect sources at moderate redshifts
- All-sky coverage (+ template images)
- Observing cadence matched to optical emission timescale
- Control rate of unassociated optical transients passing selection

- Wide-field imaging matched to the angular resolution of track events
- Imaging depth to efficiently detect sources at moderate redshifts
- All-sky coverage (+ template images)
- Observing cadence matched to optical emission timescale
- Control rate of unassociated optical transients passing selection

- Wide-field imaging matched to the angular resolution of track events
- Imaging depth to efficiently detect sources at moderate redshifts
- All-sky coverage (+ template images)
- Observing cadence matched to optical emission timescale
- Control rate of unassociated optical transients passing selection

Peak of optical emission occurs a few days to a few weeks after initial explosion

Planning 6 epochs per alert = 2 hrs total DECam time

- Wide-field imaging matched to the angular resolution of track events
- Imaging depth to efficiently detect sources at moderate redshifts
- All-sky coverage (+ template images)
- Observing cadence matched to optical emission timescale
- Control rate of unassociated optical transients passing selection

Triggered target-of-opportunity observations with spectroscopic instruments to classify and determine redshift of candidates (e.g., Gemini/GMOS-S)

Observability from CTIO

Simulated Nightly Light Curves

Detection Efficiency: Pan-STARRS, PTF/ZTF, MASTER

Detection Efficiency: Planned DECam Trigged Follow-up

Redshift Integral

Rate of Unassociated Coincident Supernovae (i.e., "Background")

False positive rates for a variety of selections designed to remove unassociated transients

Cut	Background rate per neutrino event (Full DECam FOV)	Background rate per neutrino event (0.5 deg resolution)
30-day window	13.0	3.4
10-day window,	4.7	1.2
10-day window, CC only	1.5	0.4
10-day window, z < 0.4	1.5	0.4
10-day window, z < 0.4, CC only	0.8	0.2
10-day window, z < 0.2, CC only	0.3	0.07

Expected Rates of Associated and Unassociated Supernovae

27

Estimate coincidence rate of unassociated CC SN in full DECam field of view (3 deg²) using a 10 day window centered on neutrino event

Near-Term Opportunities

2017B Semester:

- DES: Granted 8 hrs of DECam time + 7 hours of Gemini/GMOS-S time for triggered follow-up of ~4 IceCube alerts
- IceCube implementing ESTReS realtime alert stream for high-purity selection of starting track events in southern sky

Early 2018:

• ZTF begins public surveys, including survey of the full northern sky visible from Palomar Observatory with 3-day cadence

Longer-Term Opportunities

Testing an association between TeV-PeV neutrinos and explosive optical transients appears feasible with a modest but *sustained* follow-up campaign

• KM3NeT, IceCube Gen-2

Neutrino observatories:

Optical Surveys, e.g., Large Synoptic Survey Telescope (LSST, ~2022):

- Samples of ~ 10^5 CC SN yr⁻¹ over 18,000 deg² of the southern hemisphere
- Evolving modes of observatory scheduling / operation in LSST era

Extras

Summary of Current and Future Optical Survey Instrument Capabilities

Survey	D	$\Omega_{ m fov}$	Etendue	Pixels	$t_{\rm exp}$	$t_{\rm OH}$	$m_{ m lim}$	Ω	$N_{\rm obs}$	\dot{V}_{-19}	$f_{ m spec}$
Camera	(m)	(deg^2)	$(m^2 deg^2)$	('')	(sec)	(sec)		$(\mathrm{deg}^2\mathrm{hr}^{-1})$	(yr^{-1})	(Mpc^3/s)	
Evryscope	$0.06(27 \times)$	8660	26.5	13.3	120	4	16.4	251419	19279	1.1×10^{4}	1.00
ASAS-SN 1	$0.14(4 \times)$	73	1.1	7.8	180	23	17	1294	99	1.2×10^{2}	1.00
ATLAS	$0.5(2 \times)$	60	11.8	1.9	30	8	20.0	5684	435	$2.3 imes 10^4$	1.00
CRTS	0.7	8.0	3.1	2.5	30	18	19.5	600	46	1.4×10^{3}	1.00
CRTS-2	0.7	19.0	7.3	1.5	30	12	19.5	1628	124	3.7×10^3	1.00
\mathbf{LSQ}	1.0	8.7	6.8	0.9	60	40	20.5	313	24	$2.3 imes 10^3$	1.00
\mathbf{PTF}	1.2	7.3	8.2	1.0	60	46	20.7	246	18	$2.3 imes 10^3$	1.00
Skymapper	1.3	5.7	7.5	0.5	110	20	21.6	157	12	$3.9 imes 10^3$	0.52
PS1 3π	1.8	7.0	17.8	0.3	30	10	21.8	630	48	$1.9 imes 10^4$	0.42
\mathbf{SST}	2.9	6.0	39.6	0.9	1	6	20.7	3085	236	2.7×10^4	1.00
MegaCam	3.6	1.0	10.2	0.2	300	40	22.8	10	0.8	8.8×10^2	0.16
DECam	4.0	3.0	37.7	0.3	50	20	23.7	154	11	$2.9 imes 10^4$	0.07
HSC	8.2	1.7	89.8	0.2	60	20	24.6	76	5	3.1×10^4	0.03
BlackGEM*	$0.6(4 \times)$	$2(4\times)$	11.3	0.6	30	5	20.7	822	63	7.6×10^3	1.00
ZTF^*	1.2	47	53.1	1.0	30	15	20.4	3760	288	$2.5 imes 10^4$	1.00
$LSST^*$	6.7	9.6	319.5	0.2	30	11	24.7	842	64	3.7×10^5	0.03

Bellm 2016 arXiv:1605.02081