On the Anisotropy of the Arrival Directions of Galactic Cosmic Rays

Markus Ahlers

Niels Bohr Institute, Copenhagen

TeVPA 2017, August 11, 2017

Anisotropy of the Arrival Directions of Galactic CRs

Galactic Cosmic Rays

- Standard paradigm: Galactic CRs accelerated in supernova remnants
- ✓ sufficient power: $\sim 10^{-3} \times M_{\odot}$ with a rate of ~ 3 SNe per century [Baade & Zwicky'34]
 - galactic CRs via diffusive shock acceleration?

 $n_{\rm CR} \propto E^{-\gamma}$ (at source)

 energy-dependent diffusion through Galaxy

 $n_{\rm CR} \propto E^{-\gamma-\delta}$ (observed)

arrival direction mostly isotropic

CR Arrival Directions

Cosmic ray anisotropies up to the level of **one-per-mille** at various energies (Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS- γ ; IceCube; HAWC)

[→ talk by Dan Fiorino; IceCube & HAWC'17]

Markus Ahlers (NBI, Copenhagen)

Anisotropy of the Arrival Directions of Galactic CRs

Dipole Anisotropy

• spherical harmonic expansion of relative CR intensity:

$$I(\alpha, \delta) \simeq 1 + \underbrace{\delta \cdot \mathbf{n}(\alpha, \delta)}_{\text{dipole anisotropy}} + \mathcal{O}\left(\{a_{\ell m}\}_{\ell \ge 2}\right)$$

expected dipole anisotropy:

Data-driven methods of anisotropy reconstructions used by ground-based observatories are only sensitive to dipole along the equatorial plane (EP) (or, more generally, to all *m* ≠ 0 multipoles).

$$\Delta |oldsymbol{\delta}_{ ext{EP}}| \sim rac{f_{ ext{sky}}}{\sqrt{N_{ ext{tot}}}}$$

 Monte-Carlo-based methods are sensitive to the full dipole, but are limited by systematic uncertainties.

TeV-PeV CR Dipole Anisotropy

Local Magnetic Field

reconstructed diffuse dipole:

$$\boldsymbol{\delta}^{\star} = \boldsymbol{\delta} - \underbrace{(2 + \Gamma_{\mathrm{CR}})\boldsymbol{\beta}}_{\text{Compton-Getting}} = 3\mathbf{K} \cdot \nabla \ln n^{\star}$$

projection onto equatorial plane:

 $\boldsymbol{\delta}_{\mathrm{EP}}^{\star} = (\delta_{0\mathrm{h}}^{\star}, \delta_{6\mathrm{h}}^{\star})$

- strong ordered magnetic fields in the local environment
- diffusion tensor reduces to projector: [e.g. Mertsch & Funk'14; Schwadron et al.'14]

$$K_{ij} \to \kappa_{\parallel} \widehat{B}_i \widehat{B}_j$$

 TeV–PeV dipole data consistent with magnetic field direction inferred by IBEX data [McComas et al.'09]
 [→ talk by Eric Zirnstein]

Known Local Supernova Remnants

- projection maps source gradient onto $\widehat{B} \mbox{ or } \widehat{B}$
- dipole phase α₁ depends on orientation of magnetic hemispheres
 - intersection of magnetic equator with Galactic plane defines two source groups:

$$120^{\circ} \lesssim l \lesssim 300^{\circ} \to \alpha_1 \simeq 49^{\circ}$$
$$-60^{\circ} \lesssim l \lesssim 120^{\circ} \to \alpha_1 \simeq 229^{\circ}$$

slide 7

Local Magnetic Field

 1–100 TeV phase indicates dominance of a local source within longitudes:

 $120^{\circ} \lesssim l \lesssim 300^{\circ}$

- plausible scenario: Vela SNR [MA'16]
 - age : ≃ 11,000 yrs
 - distance : $\simeq 1,000$ lyrs
 - SNR rate : $R_{SNR} = 1/30 \, yr^{-1}$
 - (effective) isotropic diffusion:

 $K_{\rm iso} \simeq 4 \times 10^{28} (E/3 {\rm GeV})^{1/3} {\rm cm}^2 {\rm /s}$

- Galactic half height : $H \simeq 3$ kpc
- instantaneous CR emission (Q_*)

Local Magnetic Field

 1–100 TeV phase indicates dominance of a local source within longitudes:

 $120^{\circ} \lesssim l \lesssim 300^{\circ}$

- plausible scenario: Vela SNR [MA'16]
 - age : ≃ 11,000 yrs
 - distance : $\simeq 1,000$ lyrs
 - SNR rate : $R_{SNR} = 1/30 \, yr^{-1}$
 - (effective) isotropic diffusion:

 $K_{\rm iso} \simeq 4 \times 10^{28} (E/3 {\rm GeV})^{1/3} {\rm cm}^2 {\rm /s}$

- Galactic half height : $H \simeq 3$ kpc
- instantaneous CR emission (Q_*)

Small-Scale Anisotropy

Suggested Origin of Small-Scale Anisotropy

٠	magnetic reconnections in the heliotail		[Lazarian & Desiati'10]
•	non-isotropic particle transport in the heliosheath		[Desiati & Lazarian'11]
•	heliospheric electric field structure		[Drury'13]
•	non-uniform pitch-angle diffusion	n-uniform pitch-angle diffusion [Malkov, Diamond, Drury & Sagdeev'10; Giacinti & Kirk'17] [> talk by Gwenael Giacinti]	
•	non-diffusive CR transport [Salvati & Sacco'08; Drury & Aharonian'08] [Battaner, Castellano & Masip'14; Harding, Fryer & Mendel'16]		
•	magnetized outflow from old SNRs	[Biermann, Becl	ker, Seo & Mandelartz'12] [→ talk by Julia Tjus]
•	strangelet production in molecular clouds or neutron stars		
		[Kotera	, Perez-Garcia & Silk '13]
→	small-scale anisotropies from local magnetic field mapping of a global dipole [Giacinti & Sigl'12; MA'14; MA & Mertsch'15] [Pohl & Rettig'16; López-Barquero, Farber, Xu, Desiati & Lazarian'16]		

Angular Power Spectrum

• smooth function $g(\theta, \phi)$ on a sphere can be decomposed in terms of spherical harmonics $Y_m^{\ell}(\theta, \phi)$:

$$g(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta,\phi)$$

angular power spectrum:

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

 approximate relation between angular scale and multipole l

$$\Delta \alpha \simeq \frac{180^{\circ}}{\ell}$$

[IceCube'16 (top) & HAWC'14 (bottom)]

Analogy to Gravitational Lensing

Markus Ahlers (NBI, Copenhagen)

Anisotropy of the Arrival Directions of Galactic CRs

Simulation via CR Backtracking

 $\sigma^2 = 1$, $r_L/L_c = 0.1$, $\lambda_{\min}/L_c = 0.01$, $\lambda_{\max}/L_c = 100$, $\Omega T = 100$ (quasi-)stationary solution of the diffusion approximation: model (p = 2/3)model (p = 1/2)model (p = 1/3) $4\pi \langle f \rangle \simeq n + \mathbf{r} \nabla n - 3 \,\widehat{\mathbf{p}} \, \mathbf{K} \nabla n$ elative power spectrum $\widehat{C}_{\ell}/\widehat{C}_1$ simulation ($\mathbf{B}_0 \parallel \nabla n$) 0.1 simulation ($\mathbf{B}_0 \perp \nabla n$) 1st order correction IceCube (rescaled) HAWC (rescaled) Liouville's theorem: 10^{-2} $f(t, \mathbf{r}(t), \mathbf{p}(t)) = f(t', \mathbf{r}(t'), \mathbf{p}(t'))$ 10^{-3} CR backtracking ($T \gg \tau_{\text{diff}}$): 10^{-} $f(0) \simeq \delta f(-T) + \langle f \rangle (-T)$ Ahlers & Mertsch (2015) 10 5 20 multipole moment ℓ ensemble-averaged power spectrum ($\ell \geq 1$): [MA & Mertsch'15]

$$\frac{\langle C_{\ell} \rangle}{4\pi} \simeq \int \frac{\mathrm{d}\hat{\mathbf{p}}_{1}}{4\pi} \int \frac{\mathrm{d}\hat{\mathbf{p}}_{2}}{4\pi} P_{\ell}(\hat{\mathbf{p}}_{1}\hat{\mathbf{p}}_{2}) \lim_{T \to \infty} \underbrace{\langle \mathbf{r}_{1i}(-T)\mathbf{r}_{2j}(-T) \rangle}_{\text{relative diffusion}} \frac{\partial_{i}n\partial_{j}n}{n^{2}}$$

Summary

- Observation of CR anisotropies at the level of one-per-mille is challenging.
- Reconstruction methods introduce bias.
- Dipole anisotropy can be understood in the context of standard diffusion theory:

[e.g. review by MA & Mertsch'16]

slide 14

[Giacinti & Sigl'12; MA'14; MA & Mertsch'15]

- TeV-PeV dipole phase aligns with local ordered magnetic field.
- → New method of measuring local magnetic fields
 - Amplitude variations as a result of local sources
 - Plausible & natural candidate: the Vela supernova remnant
- Observed CR data shows evidence of small-scale anisotropy.
 - Effect of heliosphere?
 - Result of local magnetic turbulence?
 - X Induces cross-talk with dipole anisotropy in limited field of view.

Appendix

Angular Power Spectrum

 Every smooth function g(θ, φ) on a sphere can be decomposed in terms of spherical harmonics Y^ℓ_m:

$$g(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta,\phi) \qquad \leftrightarrow \qquad a_{\ell m} = \int \mathrm{d}\Omega (Y_{\ell}^{m})^{*}(\theta,\phi) g(\theta,\phi)$$

angular power spectrum:

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

• related to the two-point auto-correlation function: $(\mathbf{n}_{1/2} : \text{unit vectors}, \mathbf{n}_1 \cdot \mathbf{n}_2 = \cos \eta)$

$$\xi(\eta) = \frac{1}{8\pi^2} \int \mathrm{d}\mathbf{n}_1 \int \mathrm{d}\mathbf{n}_2 \delta(\mathbf{n}_1 \mathbf{n}_2 - \cos\eta) g(\mathbf{n}_1) g(\mathbf{n}_2) = \frac{1}{4\pi} \sum_{\ell} (2\ell + 1) \frac{C_{\ell} P_{\ell}(\cos\eta)}{C_{\ell} P_{\ell}(\cos\eta)}$$

→ Note that individual C_ℓ's are independent of coordinate system (assuming full sky coverage).

Multipole Cross-Talk

• relative CR intensity (including small-scale structure):

$$I(\alpha, \delta) = 1 + \sum_{\ell \ge 1} \sum_{m \ne 0} a_{\ell m} Y_{\ell m}(\alpha, \pi/2 - \delta)$$

- dipole: $a_{1-1} = (\delta_{0h} + i\delta_{6h})\sqrt{2\pi/3}$ and $a_{11} = -a_{1-1}^*$
- traditional dipole analyses extract amplitude " A_1 " and phase " α_1 " from data projected into right ascension ($s_{1/2} \equiv \sin \delta_{1/2}$)

$$A_1 e^{i\alpha_1} = \frac{1}{\pi} \int_0^{2\pi} \mathrm{d}\alpha e^{i\alpha} \underbrace{\frac{1}{s_2 - s_1} \int_{s_1}^{s_2} \mathrm{d}\sin\delta I(\alpha, \delta)}_{\text{projection}}$$

- the presence of high *l* multipole moments introduces cross-talk
- Can now estimate the systematic uncertainties of dipole measures from dipole-induced small-scale power spectrum.

Systematic Uncertainty of CR Dipole

Appendix

Systematic Uncertainty of CR Dipole

Gedankenexperiment

- Idea: local realization of magnetic turbulence introduces small-scale structure [Giacinti & Sigl'11]
- Particle transport in (static) magnetic fields is governed by Liouville's equation of the CR's phase-space distribution *f*:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t,\mathbf{r},\mathbf{p})=0$$

"trivial" solution:

$$f(0, 0, \mathbf{p}) = f(-T, \mathbf{r}(-T), \mathbf{p}(-T))$$

 Gedankenexperiment: Assume that at look-back time -T initial condition is homogenous, but not isotropic:

$$f(0, \mathbf{0}, \mathbf{p}) = \widetilde{f}(\mathbf{p}(-T))$$

Gedankenexperiment

- Initial configuration has power spectrum \widetilde{C}_{ℓ} .
- For small correlation angles η flow remains correlated even beyond scattering sphere.
- Correlation function for $\eta = 0$:

$$\xi(0) = \frac{1}{4\pi} \int \mathrm{d}\hat{\mathbf{p}}_1 \tilde{f}^2(\mathbf{p}_1(-T))$$

• On **average**, the rotation in an *isotropic* random rotation in the turbulent magnetic field leaves an isotropic distribution on a sphere **invariant**:

$$\langle \xi(0)
angle = rac{1}{4\pi} \int \mathrm{d}\hat{\mathbf{p}}_1 \widetilde{f}^{2}(\mathbf{p}_1)$$

• The weighted sum of $\langle C_{\ell} \rangle$'s remains constant:

$$\frac{1}{4\pi} \sum_{\ell \ge 0} (2\ell+1)\widetilde{C}_{\ell} = \frac{1}{4\pi} \sum_{\ell \ge 0} (2\ell+1) \left\langle C_{\ell}(T) \right\rangle$$

Evolution Model

• Diffusion theory motivates that each $\langle C_\ell \rangle$ decays exponentially with an effective relaxation rate [Yosida'49]

$$u_\ell \propto \mathbf{L}^2 \propto \ell(\ell+1)$$

• A linear $\langle C_{\ell} \rangle$ evolution equation with generation rates $\nu_{\ell \to \ell'}$ requires:

$$\partial_t \langle C_\ell \rangle = -\nu_\ell \langle C_\ell \rangle + \sum_{\ell' \ge 0} \nu_{\ell' \to \ell} \frac{2\ell' + 1}{2\ell + 1} \langle C_{\ell'} \rangle \quad \text{with} \quad \nu_\ell = \sum_{\ell' \ge 0} \nu_{\ell \to \ell'}$$

• For $\nu_{\ell} \simeq \nu_{\ell \to \ell+1}$ and $\widetilde{C}_{\ell} = 0$ for $l \ge 2$ this has the analytic solution:

$$\langle C_\ell \rangle(T) \simeq \frac{3\widetilde{C}_1}{2\ell+1} \prod_{m=1}^{\ell-1} \nu_m \sum_n \prod_{p=1 \leq n}^{\ell} \frac{e^{-T\nu_n}}{\nu_p - \nu_n}$$

• For $\nu_{\ell} \simeq \ell(\ell+1)\nu$ we arrive at a finite asymptotic ratio:

$$\lim_{T \to \infty} \frac{\langle C_{\ell} \rangle(T)}{\langle C_{1} \rangle(T)} \simeq \frac{18}{(2\ell+1)(\ell+2)(\ell+1)}$$

Comparison with CR Data

Local Description: Relative Scattering

evolution of C_l's:

[MA & Mertsch'15]

$$\partial_t \langle C_\ell \rangle = -\frac{1}{2\pi} \int d\hat{\mathbf{p}}_1 \int d\hat{\mathbf{p}}_2 P_\ell(\hat{\mathbf{p}}_1 \hat{\mathbf{p}}_2) \langle (\mathbf{p}_1 \nabla f_1 + i \boldsymbol{\omega} \mathbf{L} f_1) f_2 \rangle$$

large-scale dipole anisotropy gives an effective "source term":

$$-\frac{1}{2\pi}\int \mathrm{d}\hat{\mathbf{p}}_{1}\int \mathrm{d}\hat{\mathbf{p}}_{2}P_{\ell}(\hat{\mathbf{p}}_{1}\hat{\mathbf{p}}_{2})\langle(\mathbf{p}_{1}\nabla f_{1})f_{2}\rangle\rightarrow Q_{1}\delta_{\ell 1}$$

• BGK-like Ansatz for scattering term $(\langle i\omega Lf \rangle \rightarrow -\frac{\nu}{2}L^2 \langle f \rangle)$ [Bhatnagaer, Gross & Krook'54]

$$-\frac{1}{2\pi}\int \mathrm{d}\hat{\mathbf{p}}_{1}\int \mathrm{d}\hat{\mathbf{p}}_{2}P_{\ell}(\hat{\mathbf{p}}_{1}\hat{\mathbf{p}}_{2})\langle(i\boldsymbol{\omega}\mathbf{L}f_{1})f_{2}\rangle \rightarrow \frac{1}{2\pi}\int \mathrm{d}\hat{\mathbf{p}}_{1}\int \mathrm{d}\hat{\mathbf{p}}_{2}P_{\ell}(\hat{\mathbf{p}}_{1}\hat{\mathbf{p}}_{2})\tilde{\nu}(\hat{\mathbf{p}}_{1}\hat{\mathbf{p}}_{2})\mathbf{L}^{2}\langle f_{1}f_{2}\rangle$$

• Note that $\tilde{\nu}(1) = 0$ for vanishing regular magnetic field.

$$\tilde{\nu}(x) \simeq \nu_0 (1-x)^p$$

Cosmic Ray Dipole Anisotropy

cosmic-ray (CR) arrival directions described by phase-space distribution

$$f(t,\mathbf{r},\mathbf{p}) = \underbrace{\phi(t,\mathbf{r},p)/(4\pi)}_{\text{monopole}} + 3 \, \widehat{\mathbf{p}} \underbrace{\Phi(t,\mathbf{r},p)/(4\pi)}_{\text{dipole}} + \dots$$

local CR spectral density [GeV⁻¹cm⁻³]

$$n(p) = p \underbrace{\overset{2}{\underbrace{\phi(t, \mathbf{r}_{\oplus}, p)}}_{\propto p^{-(\Gamma_{\rm CR}+2)}} \propto p^{-\Gamma_{\rm CR}}$$

- in the absence of sources, follows Liouville's equation ($\dot{f} = 0$)
- → quasi-stationary dipole ($\partial_t \Phi \simeq 0$):

$$\underbrace{\partial_t \phi \simeq \nabla_{\mathbf{r}} (\mathbf{K} \nabla_{\mathbf{r}} \phi)}_{\text{diffusion equation}} \quad \text{and} \quad \underbrace{ \underbrace{\Phi \simeq -\mathbf{K} \nabla_{\mathbf{r}} \phi}_{\text{Fick's law}} }_{\text{Fick's law}}$$

• diffusion tensor K:

$$K_{ij} = \kappa_{\parallel} \widehat{B}_i \widehat{B}_j + \kappa_{\perp} (\delta_{ij} - \widehat{B}_i \widehat{B}_j) + \kappa_A \epsilon_{ijk} \widehat{B}_k$$

→ dipole anisotropy: $\delta = 3\mathbf{K} \cdot \nabla_{\mathbf{r}} \ln n$

Compton-Getting Effect

phase-space distribution is Lorentz-invariant

 $f^{\star}(\mathbf{p}^{\star}) = f(\mathbf{p})$

consider relative motion of observer (β = v/c) in plasma rest frame (*):

$$\mathbf{p}^{\star} = \mathbf{p} + p\boldsymbol{\beta} + \mathcal{O}(\boldsymbol{\beta}^2)$$

Taylor expansion:

 $f(\mathbf{p}) \simeq f^{\star}(\mathbf{p}) + (\mathbf{p}^{\star} - \mathbf{p}) \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p}) + \mathcal{O}(\beta^{2}) \simeq f^{\star}(\mathbf{p}) + p\beta \nabla_{\mathbf{p}^{\star}} f^{\star}(\mathbf{p}) + \mathcal{O}(\beta^{2})$

→ splitting in ϕ and Φ is **not invariant**:

$$\phi = \phi^{\star}$$
 and $\Phi = \Phi^{\star} + \frac{1}{3}\beta \frac{\partial \phi^{\star}}{\partial \ln p}$

• remember:
$$\phi \sim p^{-2} n_{\rm CR} \propto p^{-2-\Gamma_{\rm CR}}$$

$$\boldsymbol{\delta} = \boldsymbol{\delta}^{\star} + \underbrace{(2 + \Gamma_{\mathrm{CR}})\boldsymbol{\beta}}_{\text{Compton-Getting effect}}$$