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WIMPs

* WIMPs exchange ladder of electroweak gauge bosons

* in NR limit (v ~ 10~(-3)) gives rise to non-local, instantaneous potential
* |eads to Sommerfeld enhancement in DM annihilations:
2
ov = I"[) (0)]

e WIMP spectrum possesses bound states when WIMP mass sufficiently
large relative to mass of electroweak gauge bosons —> WIMPonium
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e alternative annihilation channel for DM...significant effect on radiative signals?




wino
SU(2). triplet Majorana fermion Xa , zero hypercharge, mass Mx
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in mass eigenbasis:  {x',x% x*} — (X% xF}

mass splitting:  §)7 = ]\4}(i _ MXO — 165MeV

interactions with electroweak gauge bosons:
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pair states, starting with a pair of neutral winos:
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Schrédinger eqtn.
e wino pair states v = (fg ((EE 0‘)) )

e in NR limit evolve in the Schrédinger eqtn:
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e under the potential:
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SU(2), -symmetric limit

high-mass limit in which SU(2). symmetry approximately unbroken:
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Coulombic limit: ~ V (r) = ==V

diagonalize the Schrodinger eqgtn:
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bound state spectrum

spin singlet spin triplet
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blue, red, green: s, p, d wave. solid, dashed, dotted ranking n from lowest
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WIMPonium formation

* initial population of free neutralinos, bound states form via radiative capture
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* capture into s=1 (spin-triplet) I=0 n=1 bound state (arising from p-wave part —dnx; /A _g
of initial state) dominates capture to 2p states — due mostly to suppression €~ /M = e~ "

particles.

bound states subsequently decay to lower-energy states or annihilate to SM

note: detecting photon lines from capture and/or transitions extremely

challenging: NFW DM profile p (8.5kpc) = 0.4GeV /cm?

Ocap = O X 10"*em? /s

—% O (107?) photons/m?/yr



capture vs. direct annihilation

e |eading-order s-wave annihilation into all channels given by diagrams:
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dark orange: tree-level inclusive annihilation —> WW, yZ, yy.
blue: p-wave —> 3§, + Y, (lowest) n=1. purple: d-wave —>
'Py+y (n =2).maroon: s-wave —>'P;+y,n=2

* direct annihilation dominates the radiative capture for the wino, due to factor e 8"

* in contrast to positronium ¢ 6_4”



conclusions

* due to spin statistics, states with odd vs. even L+S experience different
effective potentials and form distinct towers of bound states —> bound
spectrum, unsuppressed decay channels different from hydrogen-like atoms.

e wino bound state capture rate subdominant to direct annihilation —>
previous calculations of detectability of e.g. high-energy gamma-ray lines
from wino DM should not require significant modification.

e detection of low-energy photon lines from radiative capture and
transitions between bound states seem very challenging for wino.

e factors which suppress wino-onium cross section not generic — depend
sensitively on rep. of DM under the gauge group, and relative masses of DM
and force carriers —> formation of bound states cannot be safely ignored in

models with non-trivial dark sectors.

—>See e.g. Cirelli et al JCAP 1705 (2017) 036 : DM charged under dark U(1) —> formation
and decay of DM bound states have significant effect on radiative signals in indirect detection.

—>See e.g. Mitridate et al. 2017: DM fermionic 5plet of SU(2).with zero hypercharge. bound
states reduce the DM thermal abundance by about 30%, increasing the DM mass that
reproduces the cosmological abundance to about 11.5TeV. significant bound-state corrections to
DM indirect detection, characteristic spectrum of mono-chromatic lines around E (10 80) GeV,

with rates of experimental interest.



WIMPonium formation, transitions, annihilation

* |nitial population of free neutralinos, bound states form via radiative
capture...subsequently decay to lower-energy states or annihilate to

SM particles

e continuum-bound and bound-bound transitions in time-ordered
perturbation theory.
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annihilation from bound state

* bound states also decay through annihilation to SM final states.
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WIMPonium decays

e decays for lowest-energy bound states:

‘ spin-singlet 2p bound state spin-triplet 1s bound state
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e spin-singlet 2p: annihilation decay rate suppressed relative to ED transitions to lower
s and d.



detectability

photons radiated upon capture/transitions could allow study of the
QM numbers of DM...constitute a detectable signal? assuming:

NFW DM profile  p (8.5kpc) = 0.4GeV/cm® R, = 20kpc

Ocap = D X 10"*?cm? /s

O (10~°) photons/m®/yr  at Earth from the Milky Way halo

from region within 1 degree of Galactic center, rate is instead:

few x 10~ °photons/m?/yr
rate is prohibitively small for reasonable space-based telescope.

ground-based gamma-ray telescope with effective areas ~ 10>~ %m?

however, current and near-future ground based telescopes have low-
energy thresholds 10 — 20GeV

need to be lowered by an order of magnitude to observe capture and
transition photons from DM O (10) TeV — E, ~ 1GeV deepest bound states



