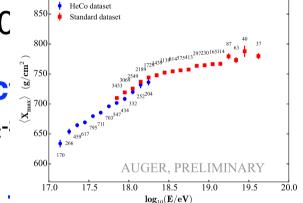
Ultrahigh-Energy Cosmic-Ray Nuclei from Radio Galaxies:

Recycling Galactic Cosmic Rays through Shear Acceleration

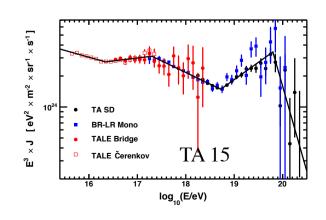
ref) SSK, K. Murase, B.T. Zhang (arXiv:1705.05027)

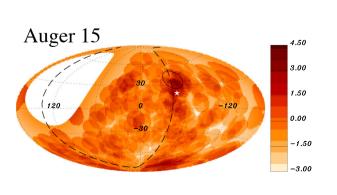
Shigeo S. Kimura

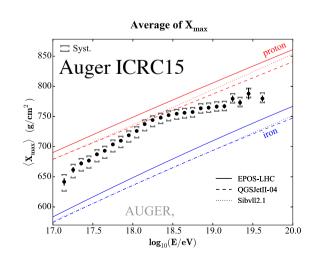
Penn State (IGC Fellow)

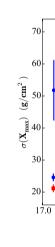


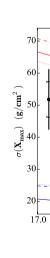
Collaborators

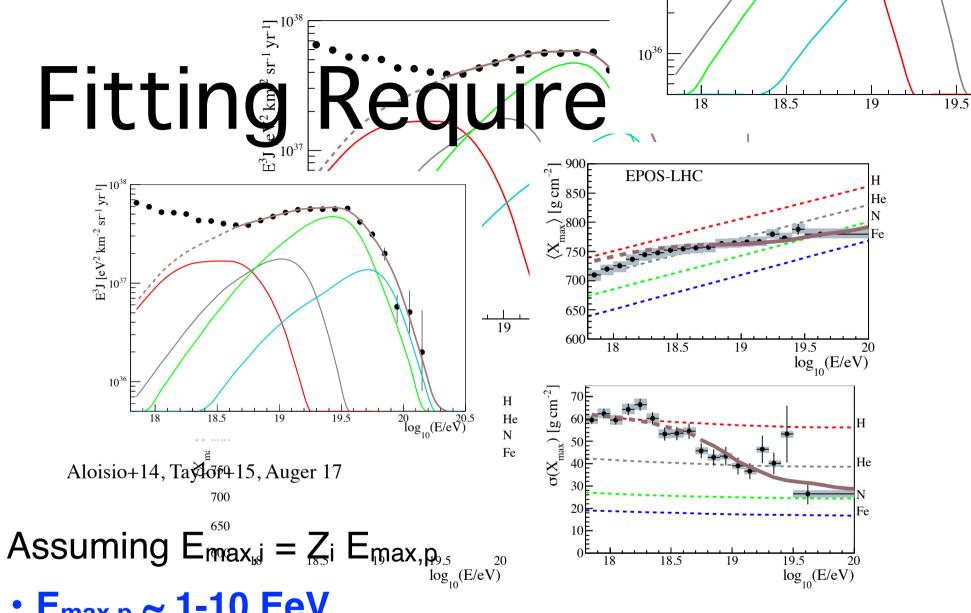

B. Theodore Zhang (Beijing Univ., Penn State), Kohta Murase (Penn State, Kyoto Univ.)


Experimental Results


- Energy Flux —> Luminosity density ~ 10⁴⁴ erg Mpc⁻³ yr⁻¹
- Spectral shape —> Cutoff energy E_{max} ~ 50
- Isotropy —> source density $N_s \gtrsim 10^{-6}$ Mpc $N_s \gtrsim 10^{-4}$ Mpc




• Shower depth —> Composition is heavy [17.0] 17.5 18.5 19.5 19.5 (TA data is compatible with Auger data) Auger & TA UHECR 2014



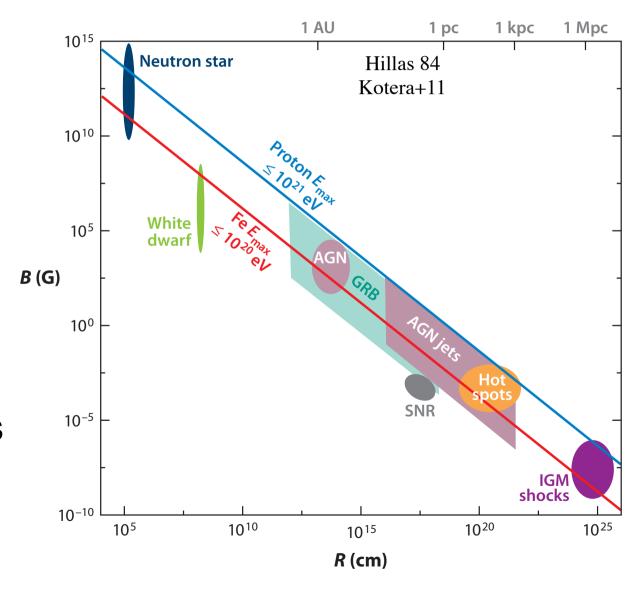
- E_{max,p} ~ 1-10 EeV
- heavier composition than the solar abundance
- Hard source spectrum: s ≤ 1

Source Candidates

AGN jets

Takahara 90; Murase+12, Caprioli 15; Araudo+16

TDEs


Zhang+17

GRBs

Waxman 95; Murase+08 Wang+08; Globus+15

newborn Pulsars

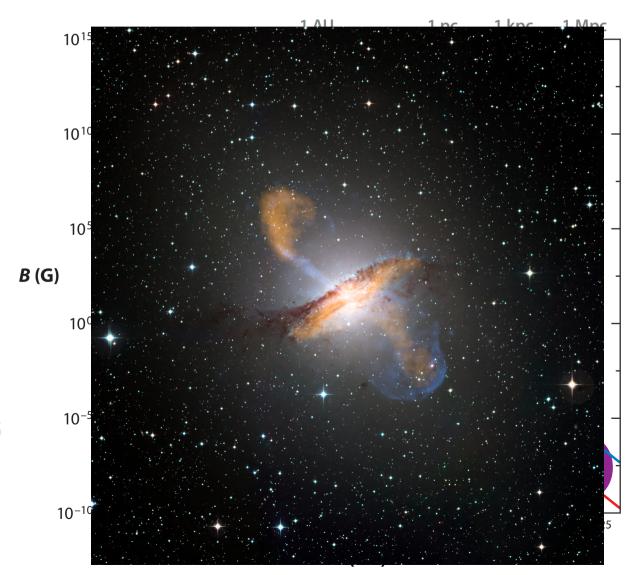
Blasi + 00; Fang+12

Source Candidates

AGN jets

Takahara 90; Murase+12, Caprioli 15; Araudo+16

TDEs


Zhang+17

GRBs

Waxman 95; Murase+08 Wang+08; Globus+15

newborn Pulsars

Blasi + 00; Fang+12

Requirements

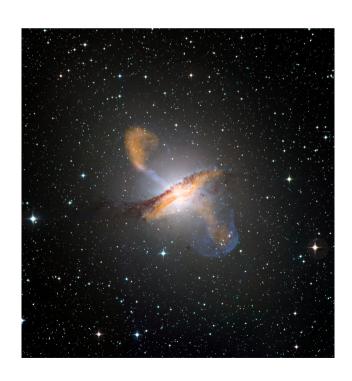
High source density Takami 12, Fang 16

• Harder spectrum than canonical shock accel.

Aloisio+14, Taylor+15, Auger 16

Heavy nuclei enhancement Aloisio+14, Taylor+15, Auger 16

Requirements & Ideas


- High source density Takami 12, Fang 16
 - -> FR-I radio galaxies with Fe Padovani+11
- Harder spectrum than canonical shock accel.
 Aloisio+14, Taylor+15, Auger 16
- Heavy nuclei enhancement Aloisio+14, Taylor+15, Auger 16

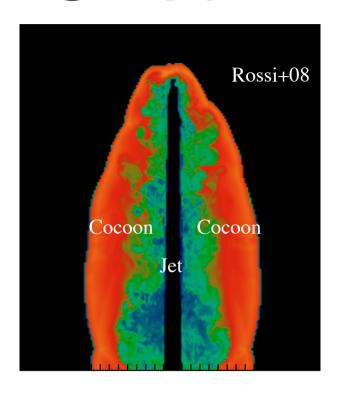
AGN model

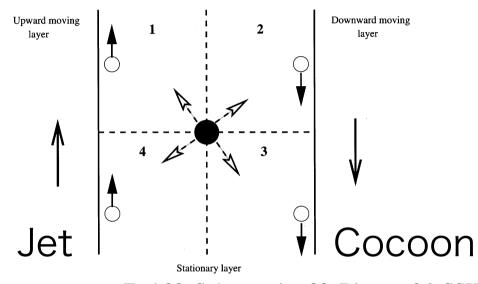
AGN jets

Takahara 90; Murase+12, Caprioli 15; Araudo+16

• Hillas condition for jets, Lumoine+ 09 $L_B > 3x10^{45}$ erg/s Γ^2 Z^{-2} E_{20}^2

AGN type	FRI	FR II
L _{jet} [erg/s]	10 ⁴³	10 ⁴⁶
E _{max} for p	×	
E _{max} for Fe		
N _s [Mpc ⁻³]	10-4	10 -7
Anisotropy		×

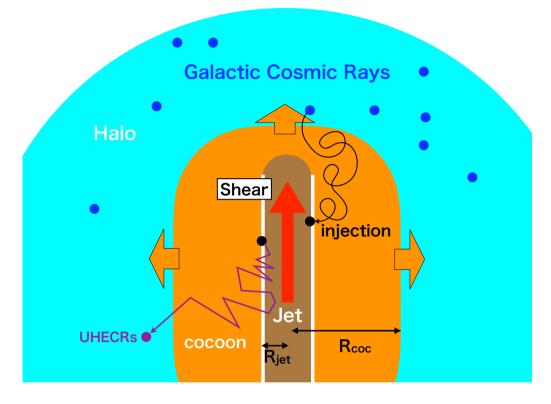

• FR I with Fe is favorable.


Requirements & Ideas

- High source density Takami 12, Fang 16
 - -> FR-I radio galaxies with Fe Padovani+13
- · Harder spectrum than canonical shock accel.

 Aloisio+14, Taylor+15, Auger 16
 - -> Shear Acceleration cf.) Ostrowski 98, Rieger+ 06
- Heavy nuclei enhancement Aloisio+14, Taylor+15, Auger 16

Shear Acceleration

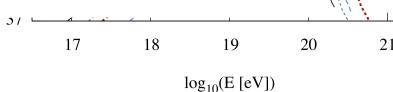

Earl 88, Subramanian 99, Rieger+ 06, SSK+ 16

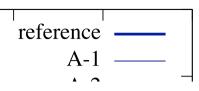
region 1 & 3: tail-on collision → E →

region 2 & 4: head-on collision $-> E \mathcal{I}$

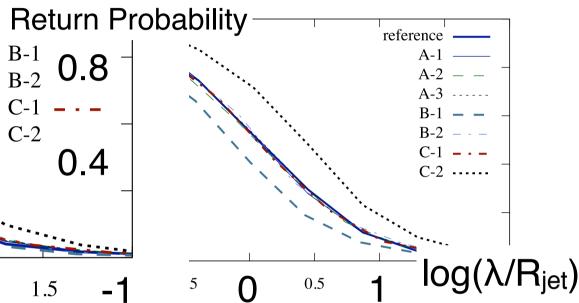
- Low energy CRs —> mean free path (λ) < size of shear layer (R_{sl}) —> Continuous shear —> Similar to 2nd-order Fermi acceleration Fermi 49, Stawartz+ 08
- High energy CRs $-> \lambda > R_{sl}$ -> Discrete shear -> numerical approach is required

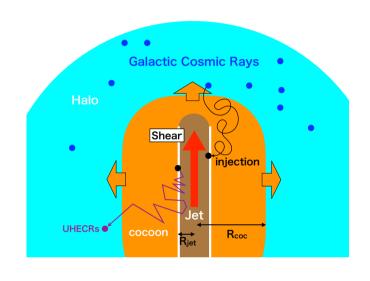
Schematic Picture

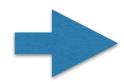


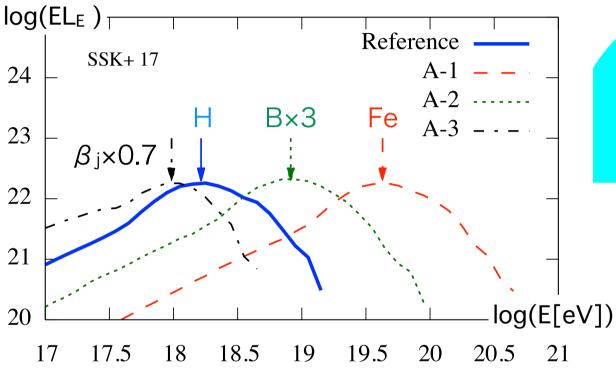

- We perform Monte Carlo Simulations for shear acceleration
- mean free path:

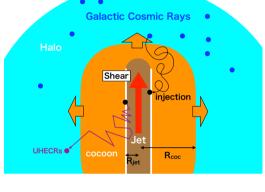
Jet: $\lambda = r_L$ (Bohm limit)


Cocoon: $\lambda = I_{coh}(E/E_{coh})^{\delta}$ ($\delta = 1/3$ for $E < E_{coh}$, $\delta = 2$ for $E > E_{coh}$)


CRs are scattered isotropically in a fluid-rest frame


Timesca.


jet, most CRs go back to jet in a few random steps leration time: $t_{acc} \sim \zeta_a (\Gamma_{jet}\beta_{jet})^{-2}(\lambda/c)$


- Majority of CRs escape from system for $\lambda > R_{jet}$ —> confinement time : $t_{conf} \sim \zeta_c R_{jet}/c$
- $t_{acc} \sim t_{conf}$

$$E_{i,\text{max}} \approx \zeta e Z_i B_{\text{coc}} l_{\text{coc}}^{1/2} R_{\text{jet}}^{1/2} \Gamma_{\text{jet}} \beta_{\text{jet}},$$

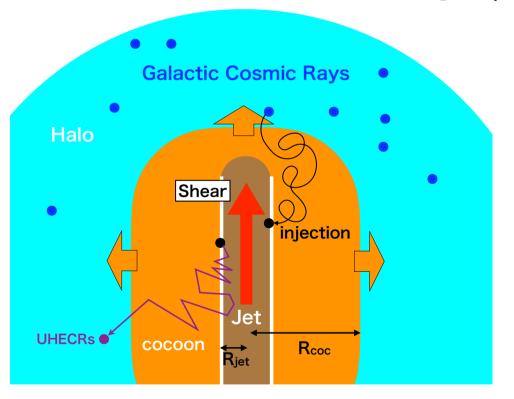
Escape spectrum

- E_{i,max} ~ a few Z_i EeV
- CRs are well confined at E<E_{i,max}

- SAchieve hard spectrum

Reference --
cf. Ostrowski 98-1 - -
B-2 -----

 R_{jet} =500 pc ξ_{esc} =10 L_{jet} = R_{coc} = H_h =5kpc I_{coh} =500pc β_{jet} =0.7 B_{jet} =300 μ G B_{coc} =3 μ G

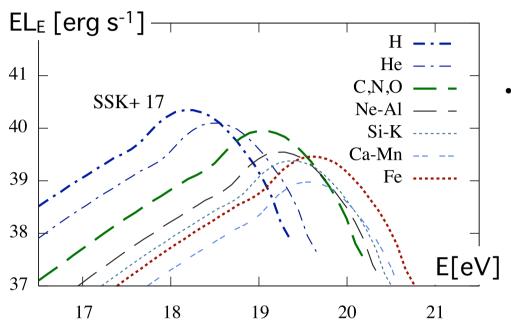

Requirements & Ideas

- High source density Takami 12, Fang 16
 - -> FR-I radio galaxies with Fe Padovani+11
- · Harder spectrum than canonical shock accel.

 Aloisio+14, Taylor+15, Auger 16
 - -> Shear Acceleration cf.) Ostrowski 98, Rieger+ 06
- Heavy nuclei enhancement Aloisio+14, Taylor+15, Auger 16
 - -> Recycling Galactic Cosmic Rays
 Caprioli 15

Recycling GCRs

Galactic cosmic rays (GCRs) are diffusing in halo


element	solar	TeV CR
H	1	1
He	9.7x10 ⁻²	0.65
0	5.2x10 ⁻⁴	0.18
Fe	3.0x10 ⁻⁵	0.23

- $\lambda < R_{\rm sl}$ —> cannot enter jet
- $\lambda > R_{\rm sl}$ —> injection to acceleration
- *E*_{inj} ~ 15 *Z_i* TeV

Shear acceleration lasts until adiabatic loss is effective

$$\dot{N}_{i,\mathrm{inj}} pprox rac{N_{i,\mathrm{inj}}}{t_{\mathrm{ad}}} pprox rac{2\pi R_{\mathrm{jet}}^2 H_h n_{i,d}}{t_{\mathrm{ad}}}$$

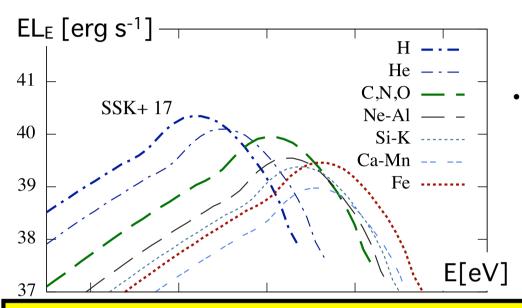
Recycling GCRs

Most of radio galaxies are elliptical galaxies

—> enhance metal abundance by factor 3

Henry+ 99

element	solar	UHECR
H	1	1
He	9.7x10 ⁻²	0.29
O	5.2x10 ⁻⁴	5.8x10 ⁻²
Fe	3.0x10 ⁻⁵	5.1x10 ⁻³


Our model achieves

- i) Heavier composition
- ii) Hard spectral index
- iii) required luminosity density

(L~2x10⁴⁰ erg/s/Mpc³ for radio galaxies)

e.g.)Takami+ 16

Recycling GCRs

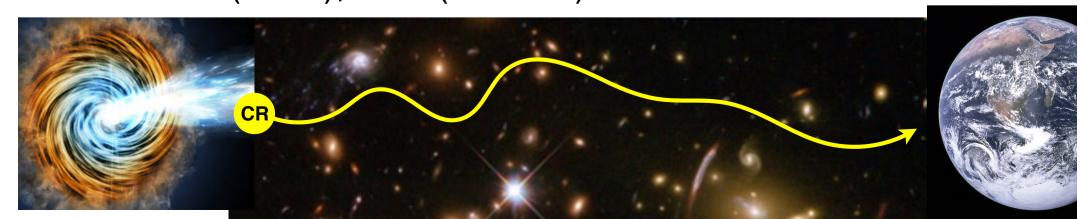
- Most of radio galaxies are elliptical galaxies -> enhance metal
 - abundance by factor 3

Henry+99

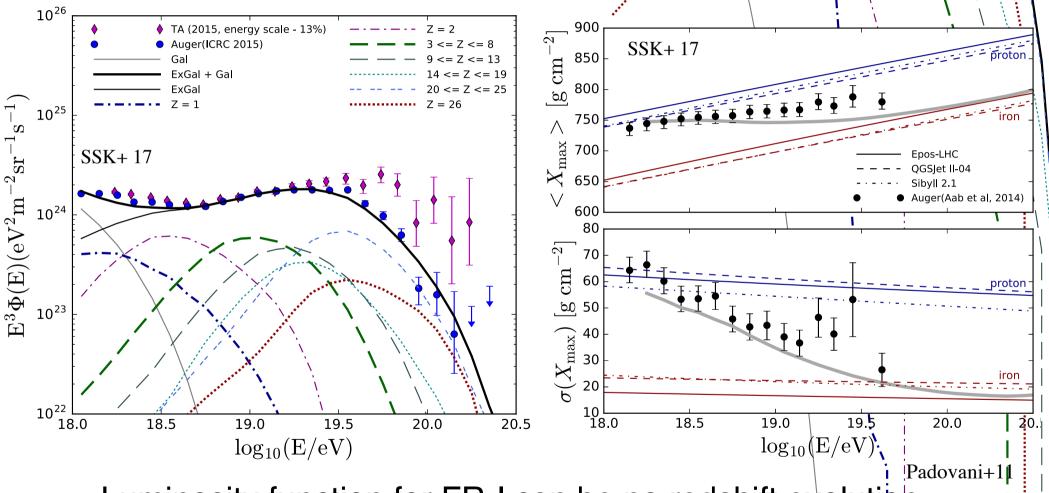
Composition and spectral index are **NOT free parameters**

5.2x10⁻⁴ **5.8x10**⁻²

3.0x10⁻⁵ **5.1x10**⁻³


for radio galaxies)

e.g.)Takami+ 16


Propagation in IGM

Kampert+12, Batista + 16

- Using CRpropa code that includes
 - a) decay of nuclei
 - b) photomeson production: $p+\gamma p + \pi$
 - c) photodisintegration : $N^A+\gamma -> N^{A-1}+p$
 - d) photo-pair production: $p+\gamma > p + e^+ + e^-$ (the code includes other channels)
- Radiation fields:
 CMB (radio), EBL (infrared) Fink+10

Spectrum & Composition

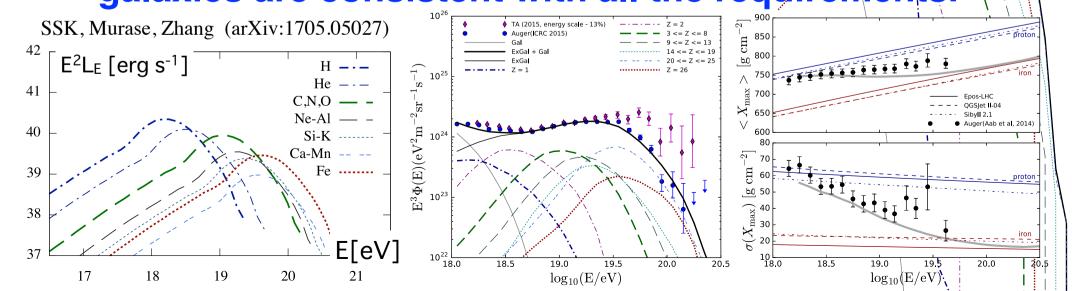
Luminosity function for FR-I can be no redshift evolution

Good agreement with experiments features

Summary

To fit the experimental data, the source of UHECR has

a) Luminosity density ~ 10⁴⁴ erg Mpc⁻³ yr ⁻¹


b) Cutoff energy ~ 50 EeV

c) Heavier composition for higher energy

d) Large number density: n >10⁻⁶ Mpc⁻³

e) Harder spectrum: s ~ 0-1

 Recycling GCRs by shear re-acceleration in radio galaxies are consistent with all the requirements.

