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=>Faraday rotation and synchrotron emission are used to measure
magnetic fields in galaxies and clusters.
=>The Universe is ubiquitously magnetized:
— Clusters and galaxies (a few pG)
— filaments (a few nG)
— voids (=0.1 fG)

=>Primordial processes produce a magnetic seed ~10~%1 G (much
smaller than observed values)
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= Structure formation results in a hierarchical web made of clusters,
filaments and voids

= Shocks inject vorticity into the intra-cluster medium

= The overall state of the Universe is that of a turbulent fluid
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=>Assume there are tiny magnetic fields generated before structure formation
=>Magnetic field are then amplified to dynamical strength and coherence length
by turbulent motions
=>|t follows directly from the induction equation:
dB

——=u-VB = B~Bexp(ut/L)
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In the kinematic regime the magnetic energy grows exponentially
(at a rate set by the eddy-turnover time 7;, = L/u)

However:
cosmological numerical models of MHD dynamo in the ICM

typically achieve only modest magnetic field amplification, by
factors of order =103 (e.g., Xu et al. 2012)

We need experiments!
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U => Equations of ideal MHD have no
—+V-FU)=0 intrinsic scale, hence a similarity
relation exists

=> This requires that particle localization,
Reynolds number, Peclet number,
magnetic Reynolds number are all
large in both the astrophysical and
laboratory systems
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=>» Can be complementary to astrophysical observations and numerical simulations:

o Compared to observations, experiments allow detailed measurements of the
plasma properties

o Experiments can achieve conditions unattainable in simulations (beyond
linear regimes, larger scales, etc.)

o The difficulty, so far, remained in achieving Reynolds numbers large enough
for dynamo to be operative

o The full range of parameters (highest energies, temperatures, etc.) are not
accessible in experiments
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X-ray imaging

Proton radiography
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=>Time resolved x-ray
images provides will be
used to infer density
fluctuation spectrum

=>Use similar analysis
approach as the one to
analyze x-ray maps
from galaxy cluster

=>Proton radiography
images map the
magnetic field
topology

=>Provides estimate of
the magnetic field
produced by
turbulence

Thomson scattering

Probe beam

=>Local, time-resolved,
temperature
measurement at the
center of the
interaction region

=>Modified to include
Faraday Rotation
capabilities
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=> Fluctuation of X-ray emission
depends on density variations
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guadratic term can be neglected

=> The 2D Fourier transform of the
intensity fluctuations can thus be
related to the 3D spectrum of the
density fluctuations
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=> There is strong indication density

and velocity fluctuations have the
1§ . I same spectrum (Zhuravleva et al.
1.5-GrPdB | | | Griq A 2015)
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=> Assuming Kolmogorov spectrum
for the motions, velocities at
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=> Bulk velocity of the flows from global shift of the scattering features
— Before the collision, U =~ 150 — 200 km/s
— After the collision, U =~ 20 — 80 km/s

=> Sound velocity from separation of ion-acoustic waves
— Before the collision, T, = 250 eV
— After the collision, T, = 400 — 500 eV

=> Additional broadening due to turbulent velocity
— At the scale of the Thomson scattering probe (50 um), u,~50 km/s
— This gives a velocity of 100 km/s at the outer scale
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where turbulent dynamo can be excited CHICAGO
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=» We have achieved magnetic Reynolds number much larger that the

threshold value for turbulent dynamo action

=> Expect to reach dynamical equipartition between fluid motions and

magnetic field
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=> Our analysis suggests 25x
amplification of the RMS field and
peaks of 450 kG (near saturation)

Byms ~ 100kG
*Brnas = 450 kG
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* Fast particles collide with moving
magnetized clouds (Fermi, 1949).
Particles can gain or lose energy, but
head-on collisions (gain) are slightly
more probable

* The evolution of CRs as they are
accelerated in the plasma is
governed by a diffusion equation
(Kaplan, 1955; Cowsik & Sarkar,
1984; Blandford & Eichler, 1987)
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* In addition to astrophysical sources,
ok, laboratory plasmas can also
e S P B potentially accelerate particle
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We use the dynamo platform to study
proton diffusion through plasma
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= High energy protons
produced by capsule
implosion are
collimated with a
pinhole

= As they pass through
the turbulent plasma
they acquire
transverse deflections
(diffusion)
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=> The proton deflection at later times is determined by the electric fields in

the plasma
=> The electric field is given by the generalized Ohm’s law:

E=—Vp><B—i|7><B—Ete
Ho
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=> This term gives a smaller velocity deflection independent on the proton
energy (does not agree with data at later times)

=> The second term is always small since the magnetic Reynolds number is
large. That is, resistive diffusion is negligible

=> The thermoelectric (baroclinic) field is largest at the resistive scale:
Fo— P 1 T
LER eng (1-6) Ay

=> This gives for the 3.3 MeV protons Av, ~2 X 107 cm/s, in agreement
with data

= The predicted acceleration is AW ~E;, (L£,)/?~100 keV
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Summary

* Magnetic fields are ubiquitous in the Universe. Their strength suggest
turbulent dynamo is operative

* Laser-plasma experiments have reached the conditions were
turbulent dynamo could be initiated, and we have seen.large
amplification

* Turbulent magnetic fields are associated to particle acceleration :and
CR’s

* We have measured the diffusion of protons through the turbulent
plasma

* Laboratory laser-based platforms offer the ability to directly test

theory of particle acceleration =




