Phenomenology 2025 Symposium

Contribution ID: 141

Type: not specified

Reionization and the Hubble Constant: Correlations in the Cosmic Microwave Background

Monday 19 May 2025 17:45 (15 minutes)

Recently, the James Webb Space Telescope (JWST) has found early galaxies producing photons from more efficient ionization than previously assumed. This may suggest a reionization process with a larger reionization optical depth, τ_{reio} , in some mild disagreement with that inferred from measurements of cosmic microwave background (CMB). Intriguingly, the CMB would prefer larger values of τ_{reio} , more consistent with the recent JWST hint, if the large-scale measurements (i.e. $\ell < 30$) of E-mode polarization are removed. In addition, τ_{reio} has an indirect correlation with today's Hubble constant H_0 in Λ CDM. Motivated by these interesting observations, we investigate and reveal the underlying mechanism for this correlation, using the CMB dataset without the low- ℓ polarization data as a proxy for a potential cosmology with a larger τ_{reio} . We further explore how this correlation may impact the Hubble tension between early and late universe measurements of H_0 , in Λ CDM as well as two proposals to alleviate the Hubble tension: the dark radiation (DR) and early dark energy (EDE) models. We find that the Hubble tension gets further reduced mildly for almost all cases due to the larger τ_{reio} and its positive correlation with H_0 , with either the Baryon Acoustic Oscillations (BAO) data before those from the Dark Energy

Spectroscopic Instrument (DESI) or the DESI data.

Mini Symposia (Invited Talks Only)

Plenary (Invited talks only)

Authors: Dr J. ALLALI, Itamar (Brown University); Prof. FAN, JiJi (Brown University); Dr LI, Lingfeng (Brown University); SINGH, Praniti (Brown University (US))

Presenter: SINGH, Praniti (Brown University (US))

Session Classification: Cosmology

Track Classification: Particle Cosmology