Constraints on long-range neutrino selfinteractions from large-scale structure

Xuheng Luo

Johns Hopkins University

DPF-Pheno 2024

Constraints on long-range neutrino selfinteractions from large-scale structure Equivalence principal test of neutrinos

Xuheng Luo

Johns Hopkins University

DPF-Pheno 2024

Motivation

♦ Long range force between neutrinos are weakly constrained

$$\mathcal{L} \supset \frac{1}{2} m_{\phi}^2 \phi^2 + m_{\nu} \bar{\nu} \nu + g \phi \bar{\nu} \nu$$

- ♦ Neutrino scalar field interaction $g_{\nu\phi} \lesssim 7.7 \times 10^{-7}$ or $10^{47} \times$ Gravity [Berryman:2022]
- \Leftrightarrow Hard collisions are inefficient probe $\Gamma \propto g_{\nu\phi}^4$

Motivation

♦ Long range force between neutrinos are weakly constrained

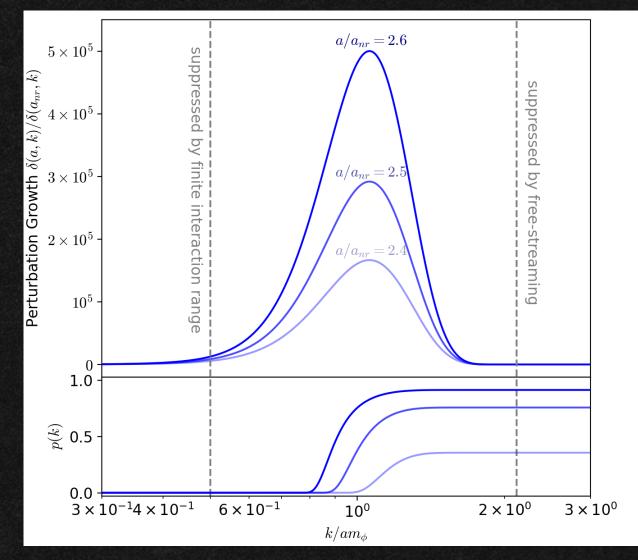
$$\mathcal{L} \supset \frac{1}{2} m_{\phi}^2 \phi^2 + m_{\nu} \bar{\nu} \nu + g \phi \bar{\nu} \nu$$

- \diamond Neutrino scalar field interaction $g_{\nu\phi} \lesssim 7.7 \times 10^{-7}$ or $10^{47} \times$ Gravity [Berryman:2022]
- \Leftrightarrow Hard collisions are inefficient probe $\Gamma \propto g_{\nu\phi}^4$
- ♦ Usually long-range interaction detection benefit from coherent enhancement
- ♦ But it is difficult to have large coherent enhancement for neutrinos in lab,
- Our work: looking for long-range interaction in the cosmic neutrino background $(n_v \sim 10^{75}/Mpc^3)$

Model Setup

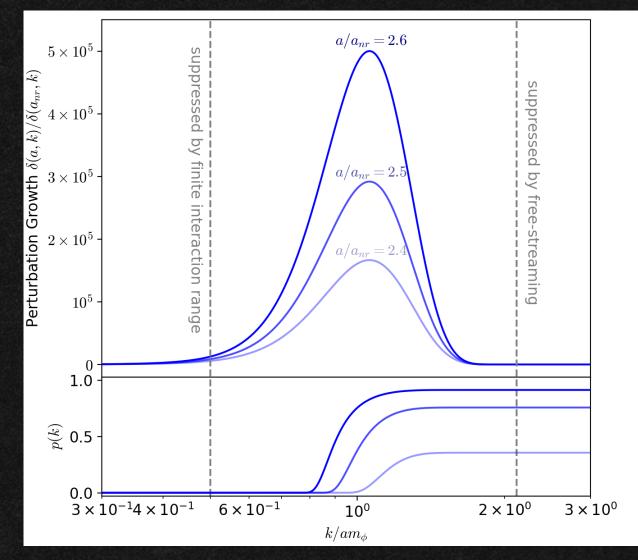
$$\mathcal{L} \supset rac{1}{2} m_{\phi}^2 \phi^2 + m_{
u} ar{
u}
u + g \phi ar{
u}
u$$

We turn on long range force between neutrinos that is stronger than gravity

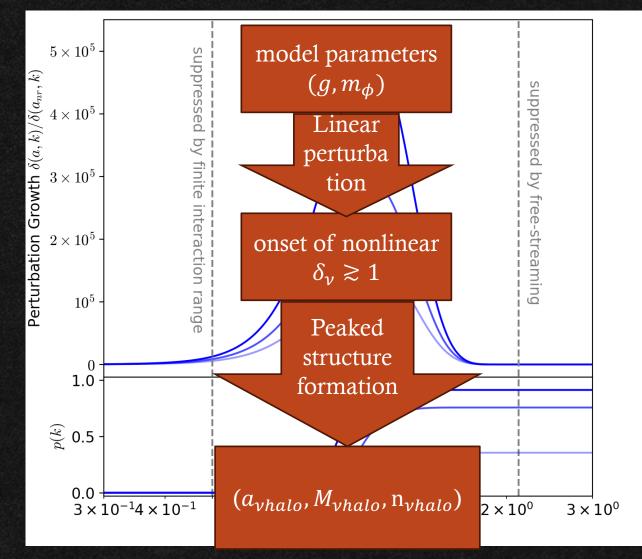

$$G' = \frac{g^2}{4\pi m_{\nu}^2} \gg G$$

- ♦ In the linear regime, the system can be solved perturbatively [EoM: Esteban:2021]
 - ♦ Background and linear perturbation evolution (analytical ✓ CLASS ✓)
- \diamond Significant enhancement of neutrino perturbation ($\delta_{\nu} \gtrsim 1$)

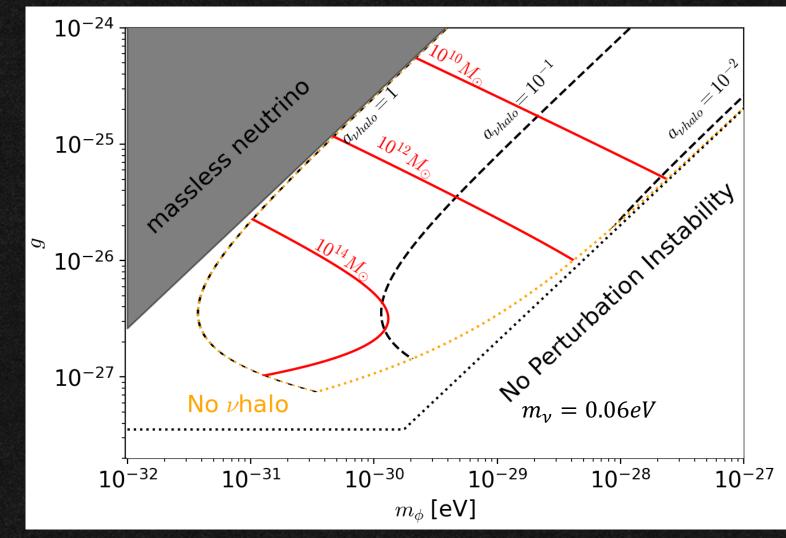
$$\hat{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{G'}{G}\frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu} + \Omega_{cdm}\delta_{cdm}\right]$$


$$\hat{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{G'}{G}\frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu} + \Omega_{cdm}\delta_{cdm}\right]$$

- ♦ Very fast growth mode at $\frac{k}{a} \gtrsim m_{\phi}$
- ♦ Scale dependent growth: suppressed at $\frac{k}{a} \lesssim m_{\phi}$ also suppressed at $k \to \infty$


$$\hat{\delta}_{\nu} + 2H\hat{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{G'}{G}\frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu} + \Omega_{cdm}\delta_{cdm}\right]$$

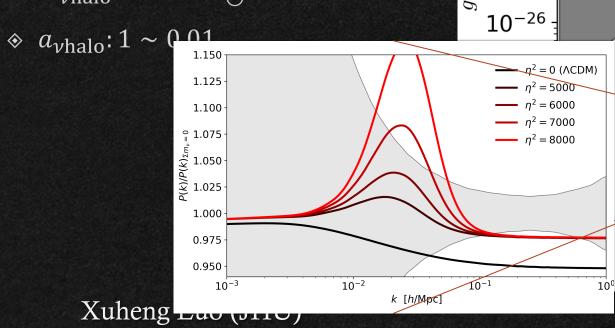
- ♦ Very fast growth mode at $\frac{k}{a} \gtrsim m_{\phi}$
- ♦ Scale dependent growth: suppressed at $\frac{k}{a} \leq m_{\phi}$ also suppressed at $k \to \infty$
- \Leftrightarrow Peaked structure formation at $\frac{k}{a} \sim m_{\phi}$ based on Press–Schechter formalism [Domenech:2023]
- \Leftrightarrow We assume $r_{\nu halo} \approx m_{\phi}^{-1}$, $M_{\nu halo} \approx 4\pi \rho_{\nu}/3m_{\phi}^3$ forms when $\delta_{\nu}(k=am_{\phi}) \approx 1$

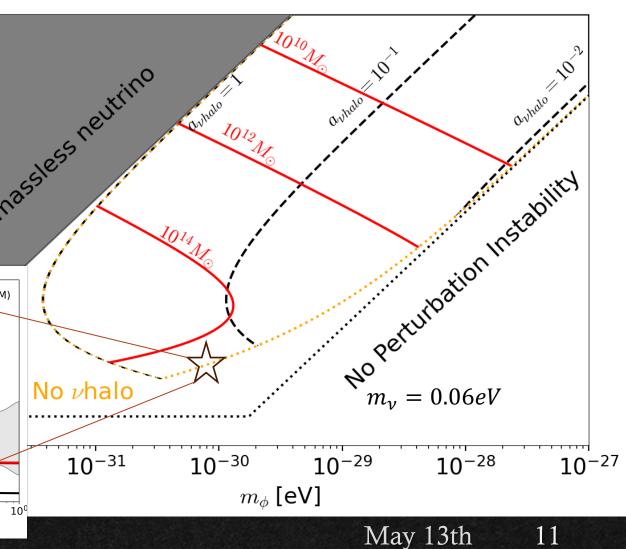

$$\hat{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{G'}{G}\frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu} + \Omega_{cdm}\delta_{cdm}\right]$$

- ♦ Very fast growth mode at $\frac{k}{a} \gtrsim m_{\phi}$
- ♦ Scale dependent growth: suppressed at $\frac{k}{a} \leq m_{\phi}$ also suppressed at $k \to \infty$
- \Leftrightarrow Peaked structure formation at $\frac{k}{a} \sim m_{\phi}$ based on Press–Schechter formalism [Domenech:2023]
- We assume $r_{vhalo} \approx m_{\phi}^{-1}$, $M_{vhalo} \approx 4\pi \rho_{v}/3m_{\phi}^{3}$ forms when $\delta_{v}(k=am_{\phi}) \approx 1$

Formation of vhalos

- Very massive halo formation from neutrinos
- \Rightarrow Formation redshift and mass non-trivially depend on (g, m_{ϕ})
- $\Leftrightarrow M_{\text{vhalo}} : \lesssim 10^{14} M_{\odot}$
- $\Rightarrow a_{\nu \text{halo}}: 1 \sim 0.01$
- Neutrinos are 0.5% of matter, how to observe these structure?




Formation of vhalos

 10^{-24}

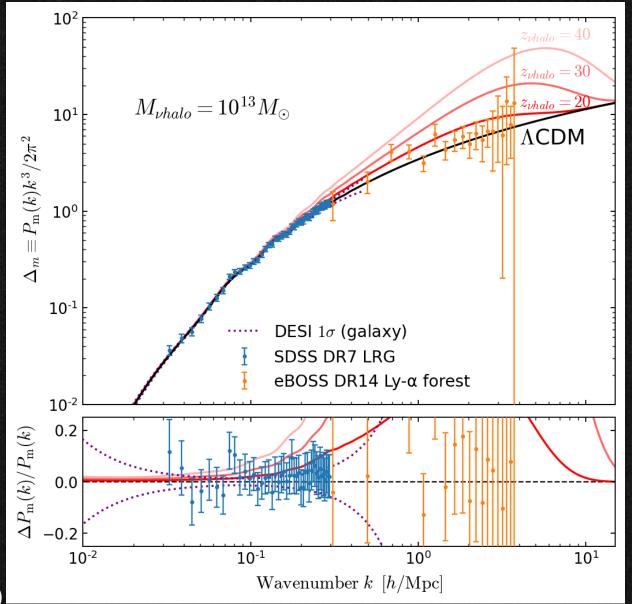
 10^{-25}

- Very massive halo formation from neutrinos
- \Rightarrow Formation redshift and mass non-trivially depend on (g, m_{ϕ})
- \Leftrightarrow $M_{\nu \text{halo}} : \lesssim 10^{14} M_{\odot}$

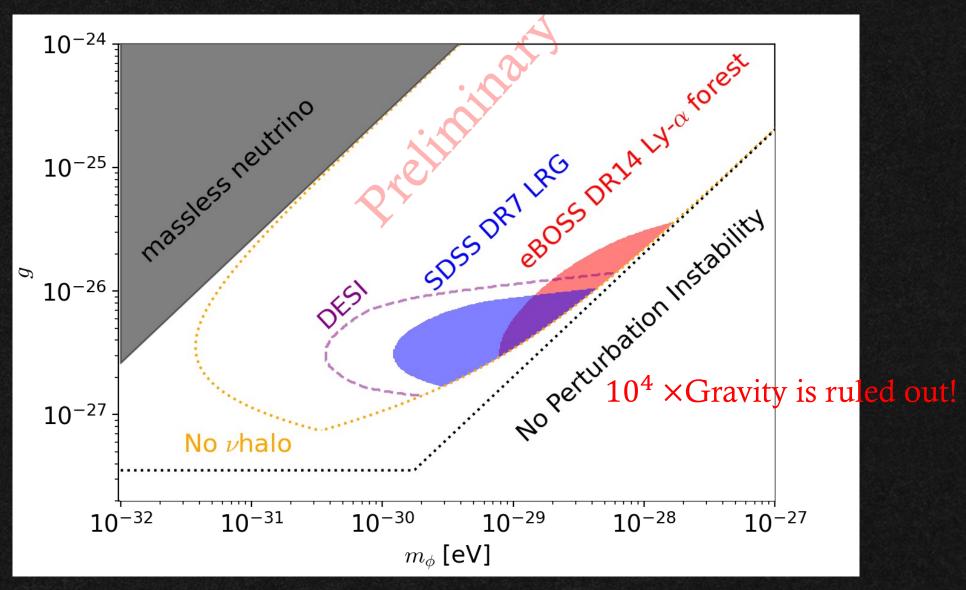
Impact on matter power spectrum

- \diamond Matter perturbation from neutrinos can be large even though $\Omega_{\nu} \approx 0.5\%$
- \diamond $\delta_{\nu} \sim 1$, at $z \sim 100 \ \rho_{\nu} \delta_{\nu} \sim \rho_{cdm} \delta_{cdm}$
- Massive primordial black hole can enhance structure formation even with small abundance [Carr:2018, Inman:2019, Liu:2022]

Xuheng Luo (JHU)


Impact on matter power spectrum

- \diamond Matter perturbation from neutrinos can be large even though $\Omega_{\nu} \approx 0.5\%$
- $\delta_{\nu} \sim 1$, at $z \sim 100 \ \rho_{\nu} \delta_{\nu} \sim \rho_{cdm} \delta_{cdm}$
- Massive primordial black hole can enhance structure formation even with small abundance [Carr:2018, Inman:2019, Liu:2022]
- * vhalos are effectively a point mass at observation scales, we model their mps by


$$P_m(a) = D_+(a, a_{vhalo})^2 (1 - \Omega_v)^2 P_{cc}(a_{vhalo}) + D_+(a, a_{vhalo})^2 \Omega_v^2 P_{vv}(a_{vhalo})$$

- $P_{\nu\nu} = 1/\bar{n}_{\nu halo}$
- corrections need to be added at small scales

Results

Results

Xuheng Luo (JHU)

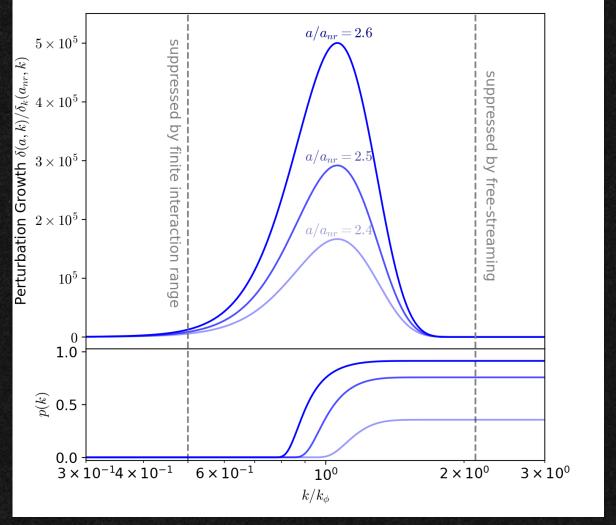
May 13th

Summary

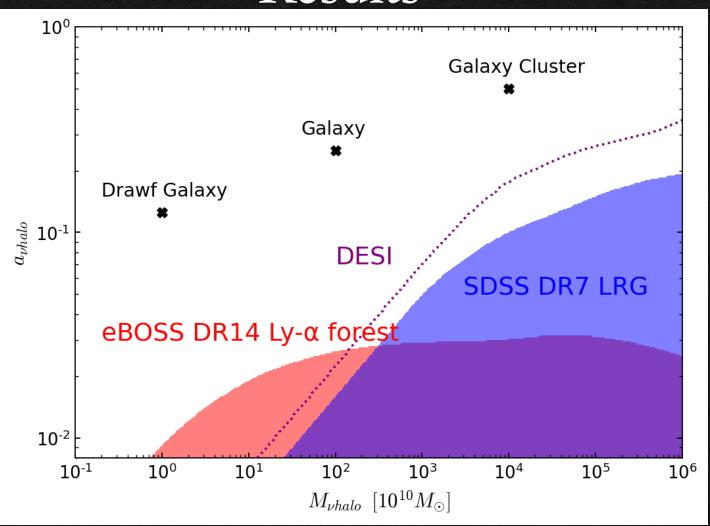
- ♦ Non-linear structure of neutrinos can form when long-range interaction is strong
- ♦ Potential large impart on structure formation from neutrinos non-linear structure
- ♦ LSS is not the only way to look for it, but also from CMB, galaxy...

Xuheng Luo (JHU) May 13th 16

Thanks!


Xuheng Luo (JHU) May 13th 17

Formation of vhalos


- ♦ Press-Schechter formalism
 - Perturbations are Gaussian random field
 - ♦ vhalo form when perturbation exceed 1
 - Predict halo formation probability

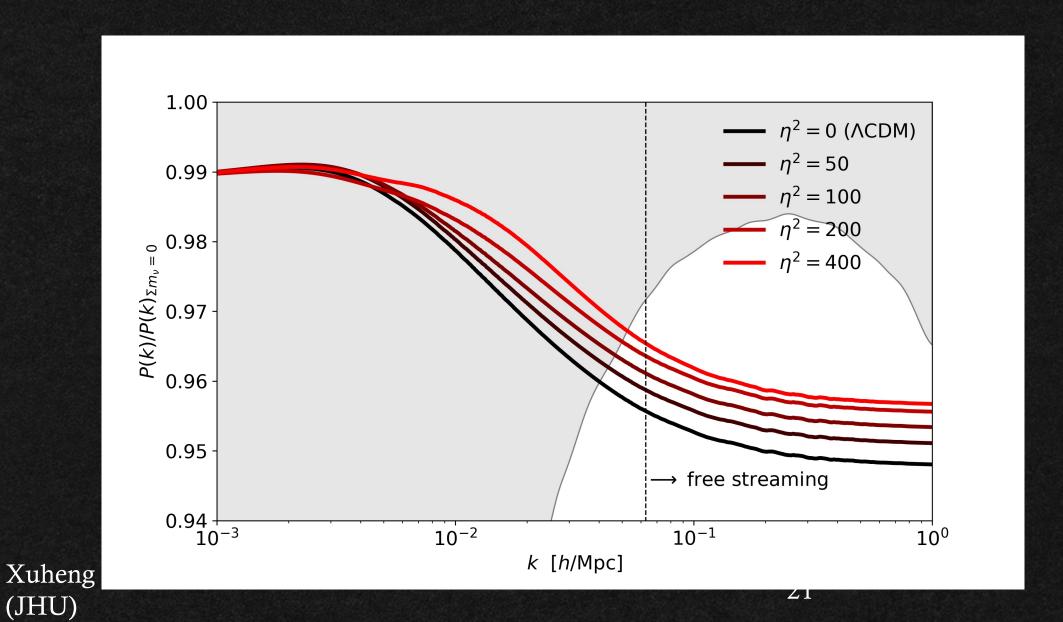
$$p(R_L, z) = 2 \times \frac{1}{\sqrt{2\pi}} \int_{\delta_{cr}/\sigma(R_L, z)}^{\infty} dx e^{-x^2/2}$$

$$\sigma(R_L, z) = \int \frac{d^3k}{(2\pi)^3} P_{\nu\nu}(k, z) |W_{R_L}(k)|^2$$

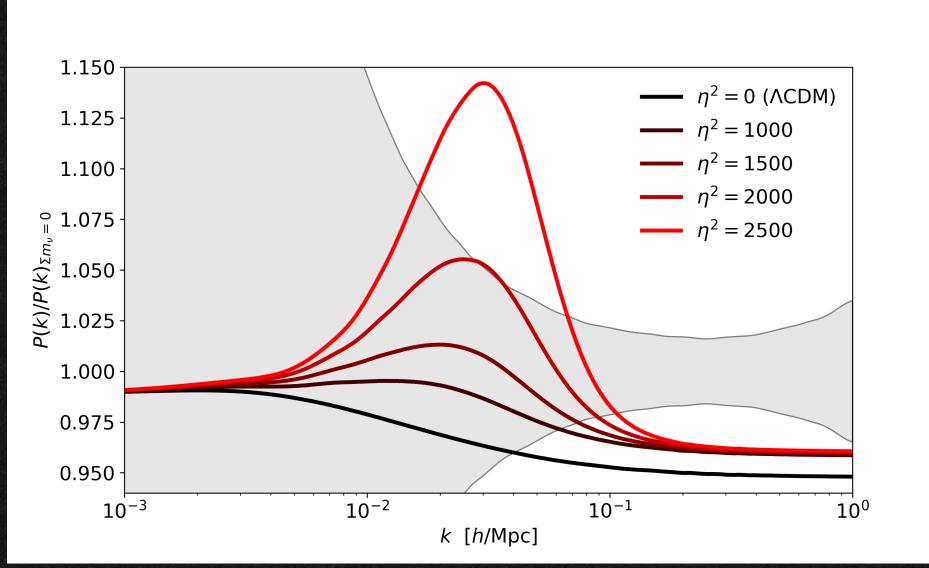
Results

Xuheng Luo (JHU)

vhalo model


- ♦ Seed effect: dense object can grow from accreting nearby dm → minihalos
- \diamond vhalo is surrounded by secondary infall of dm when $\delta_m \sim 1$
- ♦ Growth of minihalos $M_{mh} \propto a$
- Profile can be analytically derived (Bertschinger, E 1985, Fillmore&Goldreich 1984)

$$\Rightarrow \rho_{mh} = 2\rho_c \left(\frac{r}{r_{mh}}\right)^{-\frac{9}{4}}$$


- \diamond Need to cut off the profile at $r \sim r_{vhalo}$
- \Rightarrow Matter power spectrum $P_{mh}^{1h} = \frac{1}{n_{mh}} |y(k, a)|^2$

$$\Rightarrow y(k,a) = \frac{\int_0^{r_{mh}} 4\pi r^2 dr \rho(r,a) \frac{\sin(\frac{kr}{a})}{\frac{kr}{a}}}{M_{mh}}$$

Background: mass variation

Perturbation: enhanced δ_{ν} growth

