

Contribution ID: 534

## Type: not specified

## Dark Matter Searches on a Photonic Chip

Thursday 16 May 2024 14:00 (15 minutes)

Dark matter (DM) with masses of order an electronvolt or below can have a non-zero coupling to electromagnetism. In these models, the ambient DM behaves as a new classical source in Maxwell's equations, which can excite potentially detectable electromagnetic (EM) fields in the laboratory. We describe a new proposal for using integrated photonics to search for such DM candidates with masses in the 0.1 eV - few eV range. This approach offers a wide range of wavelength-scale devices like resonators and waveguides that can enable a novel and exciting experimental program. In particular, we show how refractive index-modulated resonators, such as grooved or periodically-poled microrings, or patterned slabs, support EM modes with efficient coupling to DM. When excited by the DM, these modes are read out by coupling the resonators to a waveguide that terminates on a micron-scale-sized single photon detector, such as a single pixel of an ultra-quiet chargecoupled device or a superconducting nanowire. We then estimate the sensitivity of this experimental concept in the context of axion-like particle and dark photon models of DM, showing that the scaling and confinement advantages of nanophotonics may enable exploration of new DM parameter space.

## Mini Symposia (Invited Talks Only)

Authors: GAO, Christina; Dr SINCLAIR, Neil; BLINOV, Nikita (Fermi National Accelerator Laboratory); HARNIK, Roni (Fermilab); JANISH, Ryan (Fermilab)

Presenter: GAO, Christina

Session Classification: Dark Matter

Track Classification: Dark Matter