DPF-PHENO 2024

Contribution ID: 455 Type: not specified

The Gravitational Sunyaev-Zeldovich Effect as a Probe of Primordial Black Holes as Dark Matter Candidates

Wednesday 15 May 2024 16:30 (15 minutes)

Primordial black holes (PBHs) are plausible dark matter candidates that formed from the gravitational collapse of primordial density fluctuations. Current observational constraints allow asteroid-mass PBHs to account for all of the cosmological dark matter. We show that elastic scattering of a cosmological gravitational wave background, these black holes generate spectral distortions on the background of 0.3% for cosmologically relevant frequencies without considering coherent scattering and 5% when the coherent enhancement is included. Scattering from stellar objects induce much smaller distortions. Detectability of this signal depends on our ultimate understanding of the unperturbed background spectrum.

Mini Symposia (Invited Talks Only)

Author: HOWARD, Marcell

Presenter: HOWARD, Marcell

Session Classification: Gravity & Gravitational Waves

Track Classification: Gravity & Gravitational Waves