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Motivation

» Physics before BBN (T~MeV) is not well understood due to lack of observational
data.

» Gravitational waves can be a natural way to probe this epoch between end of
inflation and BBN.
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Infroduction

®» Energy/entropy injection before BBN has been discussed extensively:
» Fluctuations generated during inflation and later reentry [Carr & Lidsey, ....]
» Collapse of domain walls [Cai et al, ...]
= PBH reheating [Bernal et al, ...]
» Bubble collisions during phase transition [Kodama et al, ...]

®» Temperature increase during reheating [Co et al, ...]

» The rate of energy injection can be either be fast where the field remains stuck
as the temperature rises or can be slow where the field fracks its T dependent
minima.

» We consider its effects on the GW spectrum for a wide range of FOPT in hidden
sectors.



Cosmological setup

» We consider the scenario where the hidden sector is thermally decoupled to the
SM.

» We assume that the SM makes up bulk of the energy density of the universe.

» The ratfio of hidden sector temperature and that of SM is given by & = TTS—’;W <1

®» Any small change in the energy density of the universe will thus have more
Impact on hidden sector as compared to SM and the Hubble will be unaffected.

» Net energy density of the universe is given as, pg(T) = Z—Z (g;‘l(T) + W) T*




Model realization

VDT~ T)§ — ET¢ + 4"

» |nitially, at high T, the field is in symmetric phase and there’s just 1 minima at ¢ =0

® Asuniverse cools, T < Ty, there exist a second minima
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®» As it further cools, these two minima become equi-potential and we have an
onset of phase transition,
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» AfterT =T,, ¢ =0 ceases to be a minima and we are left with,
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Thermal kick effects
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First transition happens at T = T, (Phase 1)

» Due tothermalkick atT;, (T, >T; >Ty), T; » T;(1+6) > T,
whereas the field remains stuck at ¢;(T;), leads to PT from ¢; —
0 (Phase 2)

® As universe cools down, there's another PT from 0 - ¢., which
is like the standard transition but happens at later redshift
(Phase 3)
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Strength of GW signal

» Amplitude of GW signal is controlled by strength parameter, a given as
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» [or the standard FOPT, we can simplify to get,
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» For the PT due to kick, we have
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Duration of PT

» This parameter gives a measure of the duration of PT

» Defined in ferms of the Euclidean bounce action as,

H, ar '
» The Euclidean Bounce action is given via, ” 2.4 0.26
fk)=14+—-(1+ + 5
S _ 483M° AL G
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M2=2D(T2—T02),Ii=ﬁ(1—T_02)

» [For the PT due to kick, the parameters get modified via,

M*(T) = M*(T) + 3¢;(2E T + \¢;)
ET=ET+ X\




Ty and v,

» Dedicated numerical simulations are needed to calculate the Ty and v,
» We will use analytfical approximations for Ty :
T,

S3
— ~4log —
T, o8 H

» [For wall velocity, a simple demarcation can be made where weaker FOPT attains
terminal velocity and for stronger transition, it can overcome friction and wall
becomes ultra-relativistic|[1]
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1, a= 1072

[1] https://arxiv.org/abs/2204.13120




GW spectrum (u =100 GeV, 5 = 0.92)
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d dependence
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Conclusion

( ) 4 ) 4 )
Energy
injection (DW, Th = Th(1 +9) 3 GW peaks
PBH etc)
\_ J \_ J \_ J

® Energy injection leads to more than one peak frequencies for GW from FOPT in
hidden sector.

» |t is fairly independent w.r.to the mass scale of the hidden sector.

» Fven for QCD like transitions, we expect to have multiple peaks due to kick.

» Hidden sectors with GW can probe a variety of new physics scenario in the pre-
BBN era.
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Hidden sector

® [or concreteness, we consider a scalar field with U(1) gauge symmetry and
a Yukawa like coupling to fermion field,

1
L=—Fu P+ D,,qu D*¢ + i pop —
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/2 P —V(4)

» The free and thermal potential are given as
1 2 12 1 4
= —— - A
Vo=—g 1o + ¢

T= m2 m5 m
Vin = 7 (e I [T2] R [W] i I [T_gl)




High T Potential

» At high tfemperatures, the effective potential is given as,

V=~ D(T?*-T2)¢* — ET$* + 2¢4

where,




Gravitational Waves signal

» Differential GW density parameter characterizes them :

1 dpaw % FF2
() = s S T
GW 0o dlog [ P pl

» Semi-analyfical parametrizations can be used to describe them,

Bolm) = 5 M) (02 (BN )

I=BW, SW 1+ aor B

) h2Q%W(f)=h2RQ§;“¢V( = f).
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GW parameters for PT Type 2

» The difference is due to phase fransition between minimas which are not
equipotential.

» Effective potential near transition is given by, R
- ol
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®» The bounce action and the transition strength become,
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GW sighal parametrization

» Normalization factors and exponents :

(New, Nsw) = (1,0.159) (pBW,Psw) = (2,2) (gew, gsw) = (2,1)

» Potential suppression due to wall velocity

(ABW7 ASW) - (00412{:”3 ) ]-)

» Spectral shape function and peak frequencies :

3.8 228 4 7 02
spw(Z) = 1+ 2838’ ssw(z) =z 4 + 32 ’

Jo.sw = 0.23 3, Josw = 0.53 8/vy,.




GW spectrum u = 10 MeV
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GW spectrum . comparing scales
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Slow reheating
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