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Motivation: Strong CP Problem and Axion

» take QCD with 1 quark
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» 0 =0+ ¢ is invariant and we can

not rotate away the CP violation
terms in the strong sector

» neutron electric dipole moment
~ 1071*0 e cm and measurements
give |d,| < 1.8 x 107%%e cm

> ) < 10712 (strong CP problem)

» introduce U(1)pq symmetry
which is spontaneously broken
and generates axion
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» from the axion potential we find
that its VEV is (a) = —0f,

ap) =0

> we got L, D —Oz5—5€0GE G5’
which cancels GP term in QCD £

> redefine a, = a — (a); (

P in addition to solving the strong
CP problem, axion is also a
viable dark matter (DM) candidate
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Axion-Photon Interaction

» axion’s two-photon interaction plays a key role in the majority of
the experimental searches
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> here, gayy X f.1 and m,f, =~ myf; ~ (100 MeV)?

» fo the case of axion-like particles (ALPs), particle’s mass and its decay
constant are treated as independent parameters
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Detection via Axion/ALP Conversion in Magnetic Field

» Helioscope searches with CAST experiment: ALPs are produced in the
Sun by Primakoff scattering and converted back to X-rays in the B-field

L=926m
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Shielding

» Haloscopes: A microwave cavity is
in a magnetic field, allowing the
conversion of DM axions into photons.
If the axion’s mass matches the
resonance frequency of the cavity, the
power output experiences amplification
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Axion/ALP Production at Nuclear Reactors

» Primakoff scattering of copiously produced photons in the reactor
core generates ALP flux

» ALPs decay or scatter in nearby neutrino experiments
(e.g. CONNIE, CONUS, MINER, TEXONO)

Dent et al. (PRL 2020)
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Axion Reactoscope

» Axions/ALPs are produced in the reactor core via Primakoff scattering
of photons chiefly off U235

» Axions/ALPs are converted in the B-field to detectable O(MeV) photons

Dent et al. (PRL 2020)
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Axion Reactoscope

Arlas Aragon VB Quewllon 2310 03631

» ALP flux at the distance D from the core ' 1
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Experimental Setup and Sensitivities
» For a successful measurement, a photon detection system should be
placed behind the magnetized region

» Regarding detectors, there is an option to use inorganic scintillators,
e.g. Nal[Tl], LaBr3(Ce) for the detection of O(MeV) photons

» CAST also searched for MeV photons from ALP conversion (0904.2103)
and based on that we made conservative background estimates of
O(1) event per second

» for such case, ga,~ sensitivity is weakened by 1 order of magnitude
compared to the ideal case with no backgrounds

» reactor-related backgrounds can be removed with proper shielding
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Experimental Setup and Sensitivities

» nuclear reactor (ILL) and the resonant cavity experiment (GrAHal) in
close proximity to each other (700 m) exist in Grenoble, France

» “ILL+GrAHal Available”: B=95T, R =40 cm and L=80 cm
» “ILL+GrAHal High B": B=43 T, R=1.7 cm and L=3.4 cm
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Experimental Setup and Sensitivities

» ALP production at ILL and detection with ILL magnets
» ALP production at Bugey and detection with CAST at CERN
» “Optimal”: Kashiwazaki-Kariwa power plant (P ~ 8.2 GW) + BabylAXO

Arias-Aragén, VB, Quevillon, 2310.03631
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Reactoscope Opportunities at ORNL
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» magnet can be put at the distance of ~ 10 m
from the reactor core
» e.g. PROSPECT © detector is at the distance of 6.5 m
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Summary

» ALPs can be copiously produced in nuclear reactors provided there is
an gsy4 interaction

» Through the same interaction, ALPs can convert back to photons in
a magnetic field

» The experimental setup features a nuclear reactor alongside the
adjacent magnetic field, an essential component in axion haloscope
experiments

» Appropriate locations for conducing the “Axion reactoscope”
experiment include Grenoble (France) and Oak Ridge National
Laboratory

» There are regions in the parameter space where sensitivity projections
exceed the existing laboratory limits
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