CLOSING REMARKS

DPF – Pheno 2024 May 17 Tao Han University of Pittsburgh

It is a wonderful conference!

D	P	F-	P	H	E	N	0	2	0	24	4
13–17 May 2 University of	2024 f Pittsbi	urgh / Car	negie M	ellon Ur	niversitv						

Plenary: Plenary I	10 plenary sessions								
Welcome	30 talks + 4 panels								
Lawrence Hall 121, (overflow in Lawrence	Hall 120), University of Pittsburgh	08:30 - 09:00							
Recent results on the Higgs Boson		Andrew Brinkerhoff							
Lawrence Hall 121, (overflow in Lawrence	Hall 120), University of Pittsburgh	09:00 - 09:30							
Recent Results on b physics		Peter Lewis							
Lawrence Hall 121, (overflow in Lawrence	Hall 120), University of Pittsburgh	09:30 - 10:00							
Future of detector development		Gabriella Carini							
Lawrence Hall 121, (overflow in Lawrence	Hall 120), University of Pittsburgh	10:00 - 10:30							
coffee break									
University of Pittsburgh / Carnegie Mellon U	Jniversity	10:30 - 11:00							
Results from T2K and NOVA		Prof. Kendall Mahn							
Funding Agencies: Computational H and AI/ML Session	Forum on early career development: Early Career Froum	Funding Agencies: Energy Frontier Ø							
Jeremy Love	290 participants	7 DOE PI sessions							

6 mini-symposia 28 talks

63 parallel sessions 344 talks!

Minisym	Dark	QCD &	Physics	Neutrino	Electrow	Gravity &	Axion:	Instrume
10 TeV	Matter:	Heavy lon	Beyond	Physics:	& Higgs	Gravitati	Axion	Neutrinos,
center of	PBH and	Physics:	the	Neutrino	Physics:	Waves:	Detection	Dark
mass	Atomic DM	Jets and	Standard	Mass	EW	GW and	and ALPs	Matter, and
Sridhara	Yue Zhao,	Energy	Model:	Models	Baryoen	Particle	Christopher	Scintillati
Dasu	Yue Zhao	Correlat	Charged	Saarik Kalia	and Phase	Cosmolo	Verhaaren	Andreas
		Keping Xie	Higgs		Transition	Navin		Werner
			Searches		David	McGinnis		Jung
			Prudhvi		Tucker-			
David La	David La	Law 107,	Bhattiprolu	David La	Smith	David La	Law 109,	Law 111,
14:00	14:00	14:00		14:00		14:00	14:00	14:00

Coffee Break: coffee break

Lawrence Hall and Law Building

15:30 - 16:00

Minisy	Dark	Quark	Gravity &	Physic	Neutrino	Electro	Cosmol	Astro-p	Instrum
forward	Matter:	and	Gravita	Ben Lillard	Physics:	& Higgs	& Dark	Javier F	ATLAS
physics	Astrop	Lepton	Waves:		Neutrino	Physics:	Energy:		and CMS
Brian	Probes	Flavor	Gravity		Mixing	Electro	Eary		Zhi Zheng
Thomas	Benjamin	Physics:	and GW		and	Physics	Universe		
Batell	Lehmann	Techni	Pheno		Decay	at the	and		Law 109,
		and	Tinatin		Vedran	LHC	Stasis		University
		Algorit	Kakhnia		Brdar,	Zack	Dr		of
		Gianant			Vedran	Sullivan	Taewook		Pittsburgh
David L	David L	Pezzullo	David L	David L	Brdar		Youn	Law 10	16:00 -
16:00	16:00		16:00	16:00				16:00	17:30

Thank you all for the great contributions!

Very broad topics and coverage:

- Accelerators
- Instrumentation
- Computing, Analysis Tool and Data Handling
- Machine Learning & AI
- Quantum Information & Sensors
- Electroweak & Higgs Physics
- Top Quark Physics
- Quark and Lepton Flavor Physics
- Neutrino Physics
- QCD & Heavy Ion Physics
- Dark Matter
- Physics Beyond the Standard Model
- Astro-particle Physics
- Cosmology & Dark Energy
- Gravity & Gravitational Waves
- Lattice Gauge Theory
- Quantum Field & String Theory
- Outreach, Community Engagement & DEI

The field is vibrant and dynamic!

Particle physics has enjoyed uninterrupted discoveries for several decades: from quarks to the Higgs boson 60's 70's 90's

understanding

The SM is a triumph in science! The first theory: A relativistic & quantum-mechanical Perturbative & unitary Renormalizable & UV complete Potentially valid to the Planck scale!

All known physics

$$W = \int_{k < \Lambda} [\mathcal{D}g \dots] \exp\left\{\frac{i}{\hbar} \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G}R - \frac{1}{4}F^2 + \bar{\psi}i \mathcal{D}\psi - \lambda\phi\bar{\psi}\psi + |D\phi|^2 - V(\phi)\right]\right\}$$

amplitude current quantum mechanics spacetime gravity strong & matter Higgs

electroweak

4

An eminent physicist remarked:

"... most of the grand underlying principles have been firmly established. The future truths of physical science are to be looked for in the sixth place of decimals." ---- Albert Michelson (1894)

Michelson–Morley experiment (1887): "the moving-off point for the theoretical aspects of the second scientific revolution"

Will History repeat itself (soon)?

The Standard Model: "UV completion"

QED is UV complete, but doesn't go beyond O(GeV) • e.g. $(g-2)_e$ versus $(g-2)_{\mu}$ Ethan Neil's talk • QCD is UV complete, could be dynamically extrapolated to an exponentially high scale Q $\alpha_s(Q^2) \approx 1/\ln(Q^2/\Lambda_{QCD}^2) \Rightarrow \Lambda_{QCD} \approx Q \exp(-1/2\alpha_s)$ But new physics comes in at $v \sim 250 \text{ GeV}$ • The SM with the Higgs IS UV complete, but what confidence do we have to extrapolate it to $O(M_{PL})$? Talks by Andrew Brickerhoff, Valentina Dutta, Aram Apyan ... \rightarrow UV completion needs NOT to be a completion! i.e. Go for BSM!

The Standard Model: "EFT"

"The present educated view of the standard model, and of general relativity, is again that these are the leading terms in effective field theories." S. Weinberg, hep-th/9702027

"We are all Wilsonians now." - J. Preskill, Quantum Frontier (2013)

In terms of a new physical scale Λ , below which the theory is valid:

 $\mathcal{L} = \sum c_i \Lambda^n \mathcal{O}_n = \underline{c_0 \Lambda^4 + c_2 \Lambda^2 \mathcal{O}_{\dim 2} + c_3 \Lambda \mathcal{O}_{\dim 3}} \\ + \underline{c_4 \mathcal{O}_{\dim 4}}_7 + \frac{\underline{c_6}}{\underline{\Lambda^2}} \mathcal{O}_{\dim 6} + \dots \\ \text{(marginal operators)} \quad \text{(irrelevant operators)}$

The 1st (most) "relevant operator": $c_0 \Lambda^4$ Known physics scales and the observation: $(M_{PL}/\Lambda_{cosm})^4 \sim 10^{120}$! $(\Lambda_{QCD}/\Lambda_{cosm})^4 \sim 10^{44}$! Wilsonian argument failed (badly)! "... I do not understand (quantum) gravity" --- William Bardeen

The 2nd "relevant operator": the Higgs boson mass $V = (\mu^2)|\phi|^2 + \lambda |\phi|^4$

 $c_2\Lambda^2 \sim m_h^2$: $\lambda v^2 \sim \mu^2 \sim (100 \text{ GeV})^2 \sim (10^{-16} M_{\text{Planck}})^2$ "... scalar particles are the only kind of free particles whose mass term does not break either an internal or a gauge symmetry." Ken Wilson, 1970 \rightarrow We are only in command with "marginal & irrelevant operators"! Anything big missing? Observationally, **THREE PROBLEMS** that we must find BSM solutions!

BSM 1: Neutrinos ARE massive

 ν 's: the most elusive/least known particle in the SM:

- How many species: $3 \nu_L 's + N_R$?
- Absolute mass scale: $m_{\nu} \sim y_{\nu} \nu < 1 \text{ eV}?$

or a new physics scale via "see-saw": $m_{\nu} \sim \kappa \frac{\langle H^0 \rangle^2}{M}$

- Flavor oscillations & CP violation?
- Mixing with sterile/Majorana v's?
- Portal to dark sector?

Studying neutrino physics has been rewarding: 6^+ Nobel Prizes related to ν 's!

Great playground for theory & experimentation.

→ Determine the masses & their generation mechanism! See talks by Kendall Mahn, Mayly Sanchez, Kevin Kelly, ...

BSM 2: Dark Matter exists Mounting evidences for DM, thus BSM Dark Matter in theory: "embarrassment of riches"

Much more recent activities in light DM detection! → Possible next breakthrough: WIMPs, ALPs ... See talks by Kathryn Zurek, Carter Hall, Elliot Lipeles, ... **BSM 3:** Our existence -- Baryogenesis The observed baryon dominance → BSM Sakharov conditions:

- Baryon # violation (EW sphalerons)
- C & CP violation (BSM)
- Out of equilibrium (1st order PT, BSM)

Many BSM theories to accommodate

- Affleck-Dine mechanism (primordial universe)
- Lepto-genesis ($\Delta B = \Delta L$ via sphalerons)
- EW baryogenegis (1st order PT, BSM)
 Observationally,

 $\Delta B \neq 0 \Rightarrow$ proton decay, $n - \bar{n}$ oscillation $\Delta L \neq 0 \Rightarrow$ Majorana neutrinos Plus extra Higgs bosons to search for Stochastic gravitational waves ...

PUZZLES

that we may or may not find a solution

- Mass hierarchy: "Naturalness"?
- Flavors: "minimal flavor violation"?
- New dynamics: "Composite"? Jure Zupan Peter Lewis ...
- Extended symmetry: SUSY?
- Unified forces: GUTs?
- Extra dimensions / Quantum gravity?

Snowmass 2021 & the P5 recommendatons <u>http://seattlesnowmass2021.net</u> https://www.usparticlephysics.org/2023-p5-report/

Explore the Quantum Universe

EXCITING JOURNEY AHEAD!

THANK YOU ALL! HOPE TO SEE YOU AT PHENO 25!

