LHC anomalies: where ATLAS and CMS searches see tension with the Standard Model

DPF-Pheno 24 May 17, 2024

Valentina Dutta Carnegie Univers UNIVERSIC

Huge search program at the LHC!

1283 collider data papers submitted as of 2024-05-10

Exploring all directions in searches

Covering vast range of new physics signatures

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits **ATLAS** Preliminary Status: March 2023 $\sqrt{s} = 13 \text{ TeV}$ $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ ℓ, γ Jets $\dagger E_{\tau}^{\text{miss}} \int \mathcal{L} dt [fb^{-1}]$ Model Reference Limit ADD $G_{KK} + g/q$ $0 e, \mu, \tau, \gamma = 1 - 4 j$ **11.2 TeV** *n* = 2 Yes 139 2102.10874 ADD non-resonant $\gamma\gamma$ 36.7 **8.6 TeV** *n* = 3 HLZ NLO 2γ 1707.04147 ADD QBH 139 2 i **9.4 TeV** *n* = 6 1910.08447 **9.55 TeV** $n = 6, M_D = 3$ TeV, rot BH ADD BH multijet ≥3 j 3.6 1512.02586 _ RS1 $G_{KK} \rightarrow \gamma \gamma$ $k/\overline{M}_{Pl} = 0.1$ 2γ 139 4.5 TeV 2102.13405 Bulk RS $G_{KK} \rightarrow WW/ZZ$ iti-channel 1 $e, \mu \ge 1$ b, ≥ 1 J/2j Yes > 2 b, ≥ 3 j Yes 36.1 2.3 TeV $k/\overline{M}_{Pl} = 1.0$ 1808.02380 multi-channel w mass Bulk RS $g_{KK} \rightarrow tt$ 1804.10823 36.1 3.8 TeV k mass $\Gamma/m = 15\%$ 36.1 2UED / RPP 1.8 TeV Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 1803.09678 $\mathsf{SSM}\ Z' \to \ell\ell$ 2 e, µ 139 5.1 TeV 1903.06248 SSM $Z' \rightarrow \tau \tau$ 2τ 36.1 2.42 TeV 1709.07242 mass Leptophobic $Z' \rightarrow bb$ 2 b 36.1 2.1 TeV 1805.09299 mass Leptophobic $Z' \rightarrow tt$ 0 e,μ ≥1 b, ≥2 J Yes 139 $\Gamma/m = 1.2\%$ 2005.05138 mass 4.1 TeV $SSM W' \rightarrow \ell v$ 1 e, µ Yes 139 6.0 TeV 1906.05609 mas SSM $W' \rightarrow \tau v$ 1τ _ 139 5.0 TeV TLAS-CONF-2021-025 Yes $\mathsf{SSM} \ W' \to tb$ ≥1 b, ≥1 J 139 mas 4.4 TeV ATLAS-CONF-2021-043 0-2 e,µ HVT $W' \rightarrow WZ$ model B 2j/1J Yes 139 I' mass **ATLAS Long-lived Particle Searches* - 95% CL Exclusion** HVT $W' \rightarrow WZ \rightarrow \ell \nu \, \ell' \ell' \text{ model C } 3 \, e, \mu$ 2 j (VBF) Yes 139 I' mass HVT $Z' \rightarrow WW$ model B 1 e,μ 2j/1J Yes 139 mass Status: March 2023 LRSM $W_R \rightarrow \mu N_R$ 2μ 1 J 80 CI qqqq 2 j 37.0 _ Signature $\int \mathcal{L} dt \, [fb^{-1}]$ Model Lifetime limit Clllqq 2 e, µ 139 Cl eebs 1 b 139 2 e Cl µµbs 2μ 1 b 139 RPV $\tilde{t} \rightarrow \mu q$ displaced vtx + muon 136 lifetime CI tttt $\geq 1 e, \mu \geq 1 b, \geq 1 j$ Yes 36.1 $\operatorname{RPV} \tilde{\chi}_1^0 \to eev/e\mu v/\mu\mu v$ displaced lepton pair 32.8 ⁰ lifetime Axial-vector med. (Dirac DM) 139 2 j Pseudo-scalar med. (Dirac DM) 0 e, μ, τ, γ 1 – 4 j 139 Yes $\operatorname{RPV} \tilde{\chi}_1^0 \rightarrow qqq$ ⁰ lifetime displaced vtx + jets 139 Vector med. Z'-2HDM (Dirac DM) $0 e, \mu$ 2 b Yes 139 Pseudo-scalar med. 2HDM+a multi-channel 139 $\operatorname{GGM} \tilde{\chi}^0_1 \to Z\tilde{G}$ displaced dimuon 32.9 ⁰ lifetime Scalar LQ 1st gen ≥2 j ≥2 j 2 b 139 2 e Yes ⁰ lifetime GMSB non-pointing or delayed γ 139 Scalar LQ 2nd ger 2μ Yes 139 Yes 139 Scalar LQ 3rd gen 1τ GMSB $\tilde{\ell} \to \ell \, \tilde{G}$ ≥2 j, ≥2 b displaced lepton 139 lifetime 0 e,μ Scalar LQ 3rd gen 139 Yes $\geq 2 e, \mu, \geq 1 \tau \geq 1 j, \geq 1 b$ 139 Scalar LQ 3rd der displaced lepton 139 ⁻ lifetime GMSB $\tilde{\tau} \to \tau \tilde{G}$ 0 e, μ , ≥1 τ 0 – 2 j, 2 b Yes 139 mas Scalar LQ 3rd gen Vector LQ mix gen multi-channel ≥ 1 j, ≥ 1 b Yes 139 AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{+} \tilde{\chi}_1^{-}$ [±] lifetime disappearing track 136 Yes Vector LQ 3rd gen 2 e, μ, τ ≥1 b 139 [±] lifetime VLQ $TT \rightarrow Zt + X$ $2e/2\mu/\geq 3e,\mu \geq 1$ b, ≥ 1 j 139 AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^+ \tilde{\chi}_1^$ large pixel dE/dx 139 nass VLQ $BB \rightarrow Wt/Zb + X$ multi-channel 36.1 VLQ $T_{5/3}T_{5/3}|T_{5/3} \rightarrow Wt$ 2(SS)/≥3 *e*,*µ* ≥1 b, ≥1 j Yes 36.1 /3 mass Stealth SUSY 2 MS vertices 36.1 lifetime VLQ $T \rightarrow Ht/Zt$ 1 e, µ ≥1 b, ≥3 j Yes 139 mass Split SUSY large pixel dE/dx i lifetime VLQ $Y \rightarrow Wb$ 1 e,μ ≥1 b, ≥1 j Yes 36.1 mass 139 VLQ $B \rightarrow Hb$ $0 e, \mu \ge 2b, \ge 1j, \ge 1J -$ 139 nass Split SUSY displaced vtx + E_{T}^{miss} 32.8 ; lifetime VLL $\tau' \rightarrow Z\tau/H_1$ multi-channel ≥1 j Yes 139 Excited quark $q^* \rightarrow qg$ 139 2 j Split SUSY 0ℓ , 2 – 6 jets + E_{T}^{miss} 36.1 lifetime 36.7 Excited quark $q^* \rightarrow q\gamma$ 1γ mass Excited quark $b^* \rightarrow bg$ 1 b, 1 j 139 -mass $H \rightarrow s s$ 2 MS vertices 139 s lifetime Excited lepton a 2τ ≥2 j 139 Type III Seesaw 2,3,4 e, μ ≥2 j Yes 139 2 low-EMF trackless jets $H \rightarrow s s$ mass 139 lifetime LRSM Majorana v 36.1 2μ 2 j 2,3,4 e, μ (SS) various Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 139 Yes ^E mass *VH* with $H \rightarrow ss \rightarrow bbbb$ 2ℓ + 2 displ. vertices 139 lifetime Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2,3,4 *e*, *µ* (SS) 139 Multi-charged particles 139 Ilti-charged particle mass FRVZ $H \rightarrow 2\gamma_d + X$ 2μ -jets 139 d lifetime Magnetic monopoles 34.4 FRVZ $H \rightarrow 4\gamma_d + X$ 2 μ –jets 139 vd lifetime $\sqrt{s} = 13 \text{ TeV}$ √s = 13 TeV partial data full data 10⁻¹ $H \rightarrow Z_d Z_d$ 0.009-24.0 displaced dimuon 32.9 Z_d lifetime *Only a selection of the available mass limits on new states or phenomena is shown. $H \rightarrow ZZ_d$ 2 e, μ + low-EMF trackless jet 36.1 Z_d lifetime *†Small-radius (large-radius) jets are denoted by the letter j (J).* $\Phi(200 \text{ GeV}) \rightarrow ss$ low-EMF trk-less jets, MS vtx 36.1 lifetime low-EMF trk-less jets, MS vtx 36.1 $\Phi(600 \text{ GeV}) \rightarrow ss$ lifetime low-EMF trk-less jets, MS vtx 36.1 $\Phi(1 \text{ TeV}) \rightarrow ss$ $W \to N\ell, N \to \ell\ell\nu$ displaced vtx ($\mu\mu$, μe , ee) + μ 139 0.74-42 mm N lifetime displaced vtx ($\mu\mu$, μe , ee) + μ 139 3.1-33 mm displaced vtx ($\mu\mu$, μe , ee) + e 139 $W \to N\ell. N \to \ell\ell\nu$ 0.49 displaced vtx ($\mu\mu$, μe , ee) + e 139 0.39-51 1 $W \to N\ell, N \to \ell\ell\nu$

*Only a selection of the available lifetime limits is shown. 0.001 0.01

√s = 13 TeV

full data

√s = 13 TeV

partial data

0.01

0.001

ATLAS SUSY Searches* - 95% CL Lower Limits

August 2023 Signature $\int \mathcal{L} dt \, [\mathbf{fb}^{-1}]$ Model Mass limit 0 e, µ 2-6 jets E_T^{miss} E_T^{miss} $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 140 140 1.85 $m(\tilde{\chi}_1^0) \leq 400 \text{ GeV}$ 0.9 1-3 jets [8x Degen.] mono-iet $m(\tilde{q})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2-6 jets 0 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ E_T^{miss} 140 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1.15-1.95 $m(\tilde{\chi}_{1}^{0})=1000 \, GeV$ Forbidden 1 e, µ 2-6 jets 140 2.2 $m(\tilde{\chi}_1^0) < 600 \, \text{GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$ 2 jets E_T^{miss} 140 ee, µµ 2.2 $m(\tilde{\chi}_{1}^{0}) < 700 \, \text{GeV}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $0 e, \mu$ 7-11 jets $E_T^{\rm miss}$ 140 1.97 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ $m(\tilde{\chi}_{1}^{0}) < 600 \, GeV$ SS e, μ 1.15 6 jets 140 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$ 0-1 *e*, µ E_T^{miss} $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 140 $m(\tilde{\chi}^0_{1}) < 500 \, GeV$ 3 b SS e, μ 1.25 6 jets 140 $m(\tilde{g})-m(\tilde{\chi}_1^0)=300 \text{ GeV}$ $\tilde{b}_1 \tilde{b}_1$ E_T^{miss} 1.255 0 e, µ **2** *b* 140 $m(\tilde{\chi}_{1}^{0}) < 400 \, \text{GeV}$ 0.68 10 GeV< $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$ <20 GeV $\Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ 0 e,μ 2 τ E_T^{miss} E_T^{miss} 0.23-1.35 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 6 b 2 b 140 140 Forbidden 0.13-0.85 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$ 0-1 *e*,µ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ ≥ 1 jet E_T^{miss} 140 1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ 2004 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ 3 jets/1 b 2012.03799 1 e, µ E_T^{miss} 140 Forbidden 1.05 $m(\tilde{\chi}_1^0)=500 \text{ GeV}$ E_T^{miss} 1-2 τ 2 jets/1 b $m(\tilde{\tau}_1) = 800 \, \text{GeV}$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 140 Forbidden 1.4 E_T^{miss} E_T^{miss} $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0 *e*, *µ* 2 c 36.1 0.85 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 0.55 0 e, µ mono-jet 140 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$ 1-2 *e*,μ E_T^{miss} 140 1-4 *b* 0.067-1.18 $m(\tilde{\chi}_{2}^{0})=500 \, GeV$ E_T^{miss} 3 e, µ 0.86 140 Forbidden $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 1*b* $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ E_T^{miss} E_T^{miss} Multiple ℓ/jets 140 0.96 m($\tilde{\chi}_1^0$)=0, wino-bino 2106 ≥ 1 jet 0.205 ee,μμ 140 $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=5$ GeV, wino-bind 0.42 2 e, µ E_T^{miss} 140 $m(\tilde{\chi}_1^0)=0$, wino-bino $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm}$ ivia W Multiple *l*/jets E_T^{miss} $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden **)3≀̃q[±].Õ₂nvi**a Wh 140 2004 1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via $\tilde{\ell}_L / \tilde{v}$ 2 e, µ E_T^{miss} 140 $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1.0 0.003-1.0 m $E_T^{\rm miss}$ 2τ 140 0.48 $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ 0.34 $m(\tilde{\chi}_1^0)=0$ ATL E_T^{miss} E_T^{miss} 2 e, µ 0 jets 140 140 0.7 $m(\tilde{\chi}_1^0)=0$ 0.26 ee, µµ ≥ 1 jet $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ 0 *e*, µ $\begin{array}{c} \geq 3 \ b \\ 0 \ \text{jets} \end{array} \begin{array}{c} E_{T}^{\text{miss}} \\ E_{T}^{\text{miss}} \\ \geq 2 \ \text{large jets} \ E_{T}^{\text{miss}} \end{array}$ ĤĤO**loz9hC8**/ZČ 140 0.94 $BR(\tilde{\chi}^0_{\downarrow} \rightarrow h\tilde{G})=1$ $\begin{array}{c} \mathsf{BR}(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \\ \mathsf{BR}(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \end{array}$ 0.55 4 e. µ 140 0 e, µ 140 0.45-0.93 0.2 ≥ 2 jets E_T^{miss} 2 e, µ 140 0.77 $\mathsf{BR}(\tilde{\chi}_1^0 \to Z\tilde{G}) = \mathsf{BR}(\tilde{\chi}_1^0 \to h\tilde{G}) = 0.5$ 6-750 mm Disapp. trk Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ 1 jet E_T^{miss} 140 0.66 Pure Wino 9-270 mm 0.21 Pure higgsino mStable \tilde{g} R-hadron pixel dE/dx $E_T^{\rm miss}$ 2.05 140 E_T^{miss} E_T^{miss} pixel dE/dx 140 \tilde{g} [$\tau(\tilde{g})$ =10 ns] Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^{\upsilon}$ 2.2 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 0.3-30.0 $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \to \ell\tilde{G}$ Displ. lep 140 0.7 $au(ilde{\ell}) = 0.1 \text{ ns}$ $au(ilde{\ell}) = 0.1 \text{ ns}$ 0.34 0.36 E_T^{miss} 0 1-519 m pixel dE/dx 140 $\tau(\tilde{\ell}) = 10 \text{ ns}$ 140 0.625 1.05 Pure Wino 140 $m(\tilde{\chi}_1^0)=200 \text{ GeV}$ 0.95 1.55 $[\lambda_{i33} \neq \mathbf{0}, \lambda_{12k} \neq \mathbf{0}]$ 1.6 2.25 140 Large $\lambda_{11}^{\prime\prime}$ 1.05 $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like 36.1 ATL 140 Forbidder 0.95 $m(\tilde{\chi}_1^{\pm})=500 \text{ GeV}$ 36.7 0.42 0.61 0.4-1.45 36.1 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$ 136 0.2-0.32 140 Pure higgsind 10-1 181 Mass scale [TeV]

Limits set on BSM physics in many, many scenarios ...

		_							
		> 0.4		$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp} / ilde{\chi}_1^0, ilde{\chi}_1$	$\frac{2}{1} \rightarrow Z\ell \rightarrow \ell$	<i>!!!</i>	3 <i>e</i> , µ		
				$\tilde{\chi}_{10}^{\pm}\tilde{\chi}_{0}^{\mp}\tilde{\chi}_{123.2}^{0}$	WW/Zll	<i>ℓℓνν</i>	4 <i>e</i> , <i>µ</i>	0 jets	E_T^{miss}
_				$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1$	$, \tilde{\chi}_1^0 \to q q$	19		≥8 jets	
		0.0-	>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0, \tilde{\chi}_1$	tbs			Multiple	
-		0.31-72	R	$\underline{tt, t \rightarrow b\chi_1^-, \lambda}$	$\overline{a} \rightarrow bbs$			$\geq 4b$	b
				$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow o s$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow o l$			2 e. 11	2 jeis + 2 2 h	U
				19-6.94 m			1 µ	DV	
85 mm				$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \hat{\chi}_2^0$	$z_{1,2}^0 \rightarrow tbs,$	$\tilde{\chi}_1^+ \rightarrow bbs$	1-2 <i>e</i> , <i>µ</i>	≥6 jets	
_	0.654-93	39 mm							
			* ~ 1		<i>c.u</i>	., , ,		1	
	2.7-534 mn	n	*Only	a selection	of the a	avka(Na)el@oo Many of th	nmess limits on	new stat	20601/2181
) m			simp	lified mode	ls, c.f. r	efe(Zfo)≠ 400	selssumption:	s made. 1	808.03057
			0.2	<mark>I-5.2 m</mark>		$m(Z_d)=10$	GeV	1	811.02542
		0.41-	51.5 m		_	$\sigma \times \mathcal{B}=$	= 1 pb, <i>m</i> (<i>s</i>)= 50 G	eV 1	902.03094
0.04-21.5 m						$\sigma \times \mathcal{B}=$	= 1 pb, <i>m</i> (<i>s</i>)= 50 G	eV 1	902.03094
0.06-52.4 m						$\sigma \times \mathcal{B}=$	= 1 pb, <i>m</i> (<i>s</i>)= 150 (GeV 1	902.03094
-		-			_				
						m(N) = 6 G	eV, Dirac	2	204.11988
						m(N) = 6 G	eV, Majorana	2	204.11988
81 mm						m(N)=6 G	eV, Dirac	2	204.11988
m						m(N)=6 G	eV, Majorana	2	204.11988
 0 1	<u> </u>	<u>است. ا</u> 1		 1	0	<u> </u>	100 г		
0.	•			·	U	I	$\sim c\tau [n]$	nj	
				ul i i		ul i			
	1			10		100			

τ [ns]

ATLAS

S Preliminary
eference
2010.14293 2102.10874 2010.14293 2010.14293 2101.01629 2204.13072 2008.06032 2307.01094 2211.08028 1909.08457
2101.12527 2101.12527 1908.03122 2103.08189
I.14060, 2012.03799 9, ATLAS-CONF-2023-043 2108.07665 1805.01649 2102.10874 2006.05880 2006.05880
6.01676, 2108.07586 1911.12606 1908.08215 1.10894, 2108.07586 1908.08215
AS-CONF-2023-029 1908.08215 1911.12606 To appear
2103.11684 2108.07586 2204.13072
2201.02472 2201.02472 2205.06013 2205.06013
2011.07812 2011.07812 2205.06013
2103.11684 To appear AS-CONF-2018-003 2010.01015 1710.07171
1710.05544 2003.11956 2106.09609

Covers vast range of new physics signatures

 $\Phi(1 \text{ TeV}) \rightarrow ss$

 $W \to N\ell, N \to \ell\ell\nu$

 $W \to N\ell. N \to \ell\ell\nu$

 $W \to N\ell. N \to \ell\ell\nu$

partial data full data *Only a selection of the available lifetime limits is shown. 0.001 0.01

√s = 13 TeV

s lifetime

N lifetime

N lifetime

V lifetime

0.001

3.1-33 mm

0.01

low-EMF trk-less jets, MS vtx 36.1

displaced vtx ($\mu\mu$, μe , ee) + μ 139

displaced vtx ($\mu\mu$, μe , ee) + μ 139

displaced vtx ($\mu\mu$, μe , ee) + e 139

displaced vtx ($\mu\mu$, μe , ee) + e 139

 $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSV Soarchos* - 05% CL Lower Limits

	AILAS SUST SE August 2023				AILA
	Model	Signature	<i>L dt</i> [fb ⁻¹]	Mass limit	R
	$\tilde{q}\tilde{q}, \tilde{q} ightarrow q \tilde{\chi}_1^0$	0 e, μ 2-6 jets E_T^{miss} mono-jet 1-3 jets E_T^{miss}	140 140	[1x, 8x Degen.] 1.0 1.85 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ [8x Degen.] 0.9 $m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	$0 e, \mu$ 2-6 jets E_T^{miss}	140	2.3 $m(\tilde{\chi}_1^0)=0$ GeV Forbidden 1.15-1.95 $m(\tilde{\chi}_1^0)=1000$ GeV	
	$ \begin{array}{c} \widetilde{\mathbf{g}} \\ \widetilde{\mathbf{g}} $	1 e, μ 2-6 jets $ee, \mu\mu$ 2 jets E_{rr}^{miss}	140 140	2.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$ 2.2 $m(\tilde{\chi}_1^0) < 700 \text{ GeV}$	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	$\begin{array}{ccc} 0 \ e, \mu & 7-11 \ \text{jets} & E_T^{\text{miss}} \\ \text{SS} \ e, \mu & 6 \ \text{jets} \end{array}$	140 140	1.97 $m(\tilde{x}_1^0) < 600 \text{ GeV}$ 1.15 $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	
	$\tilde{\boldsymbol{\xi}} \tilde{g}\tilde{g}, \tilde{g} \to t \tilde{\boldsymbol{\chi}}_1^0$	$\begin{array}{ccc} \text{0-1 } e, \mu & \text{3 } b & E_T^{\text{miss}} \\ \text{SS } e, \mu & \text{6 jets} \end{array}$	140 140	2.45 m($\tilde{\chi}_1^0$)<500 GeV 1.25 m($\tilde{\chi}_1^0$)=300 GeV	
	$ ilde{b}_1 ilde{b}_1$	$0 e, \mu$ $2 b$ E_T^{miss}	140	1.255 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 0.68 $10 \text{ GeV} < \Delta m(\tilde{\mu}, \tilde{\chi}_1^0) < 20 \text{ GeV}$	
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 6 \ b & E_{T \text{miss}}^{\text{miss}} \\ 2 \ \tau & 2 \ b & E_{T}^{\text{miss}} \end{array}$	140 140	Forbidden 0.23-1.35 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ 0.13-0.85 $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}, m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	0-1 $e, \mu \ge 1$ jet E_T^{miss} 1 e, μ 3 jets/1 b E_T^{miss}	140 140	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004 2012.0379
	$\begin{array}{c} \dot{\mathbf{u}} \dot{\mathbf{u}}_{1} \\ \dot{\mathbf{u}}_{1} \\$	1-2 τ 2 jets/1 b E_T^{miss} 0 e, μ 2 c E_T^{miss}	140 36.1	Forbidden 1.4 $m(\tilde{\tau}_1)=800 \text{ GeV}$ 0.85 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$	
n	$\tilde{c}_{0} \tilde{c}_{0} \tilde{c}_{1} \tilde{t}_{1}, \tilde{t}_{1} \rightarrow t \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow Z/h \tilde{\chi}_{1}^{0}$	0 e, μ mono-jet E_T^{miss} 1-2 e, μ 1-4 b E_T^{miss}	140 140	0.55 $m(\tilde{t}_1,\tilde{c}) \cdot m(\tilde{\chi}_1^0) = 5 \text{ GeV}$ 0.067-1.18 $m(\tilde{\chi}_2^0) = 500 \text{ GeV}$	
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu$ $1 b E_T^{\text{miss}}$	140	Forbidden 0.86 $m(\tilde{\chi}_1^0)=360 \text{ GeV}, m(\tilde{r}_1)-m(\tilde{\chi}_1^0)=40 \text{ GeV}$	
351	IVI phy	SICS	У	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
				0.66 Pure Wino Pure higgsino	
				2.05 2.2 m(${ ilde { ilde t}_1^0}$)=100 GeV	
0.3-3 0.1-519 m	$\begin{array}{c} 30.0 \mathbf{\overleftarrow{O}} \mathbf{\overleftarrow{O}} $	Displ. lep E_T^{miss} pixel dE/dx E_T^{miss}	140 140	$ \begin{array}{c c} \tilde{\mu} & & & \\ \hline 0.34 & & \\ 0.36 & & & \\ \hline \tau(\tilde{\ell}) = 0.1 \text{ ns} \\ \tau(\tilde{\ell}) = 10 \text{ ns} \end{array} $	
>	> 0. $\tilde{\tau}$ $\tilde{\chi}^{\dagger}_{1}\tilde{\chi}^{\dagger}_{1}/\tilde{\chi}^{0}_{1}, \tilde{\chi}^{\dagger}_{1} \rightarrow Z\ell \rightarrow \ell\ell\ell$ $\tilde{\chi}^{\dagger}_{10}\tilde{\chi}^{0}_{10}\tilde{\chi}^{0}_{12,2,2} WW/Z\ell\ell\ell\ell\nu\nu$	$\begin{array}{c} 3 \ e, \mu \\ 4 \ e, \mu \end{array} 0 \text{ jets } E_T^{\text{miss}} \end{array}$	140 140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \end{array}$	≥8 jets Multiple	140 36.1	Im $(\tilde{\chi}_1^0) = 50 \text{ GeV}, 1250 \text{ GeV}$ I.6 2.25 Large $\lambda_{112}^{\prime\prime}$ $[\lambda_{323}^{\prime\prime\prime}] = 2e-4, 1e-2]$ 0.55 1.05 m $(\tilde{\chi}_1^0) = 200 \text{ GeV}, bino-like$	ATLA
0.31	$\begin{array}{c} \overbrace{t}{t}, \overbrace{t}{t} \rightarrow b \overleftarrow{X}_{1}^{\perp}, \overleftarrow{X}_{1}^{\perp} \rightarrow b b s \\ \hline{t}_{1} \overrightarrow{t}_{1}, \overrightarrow{t}_{1} \rightarrow b s \end{array}$	$\geq 4b$ 2 jets + 2 b	140 36.7	Forbidden 0.95 $m(\tilde{\chi}_1^*)=500 \text{ GeV}$ [qq, bs] 0.42 0.61 $DD(\tilde{\chi}_1)=100 \text{ GeV}$	
	$\begin{array}{c} I_{1}I_{1}, I_{1} \rightarrow qI \\ \textbf{19-6.94 m} \\ \tilde{v}^{\pm}/\tilde{v}^{0}/\tilde{v}^{0} \approx 0 \text{, the } \tilde{v}^{+} \text{, the } \end{array}$	$\begin{array}{ccc} 2e, \mu & 2b \\ 1 \mu & \text{DV} \\ 1-2e, \mu & >6 \text{ interms} \end{array}$	36.1 136	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.654.000	$\frac{\chi_1/\chi_2/\chi_1,\chi_{1,2}\to tbs,\chi_1\to bbs}{}$	1-2 e,μ ≥o jets	140	U.2-U.32 Pure higgsino	
0.654-939 mi					
07504	*Only a calentica of the available	man limite on new statements	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Limits set on BSM physics in many, many scenarios ...

ATLAS Preliminary
Reference
2010.14293
2010.14293
2010.14293
2101.01629 2204.13072
2008.06032
2307.01094
1909.08457
2101.12527 2101.12527
1908.03122
2004.14060. 2012.03799
2012.03799, ATLAS-CONF-2023-043
2108.07665
1805.01649 2102.10874
2006.05880
2006.05880
2106.01676, 2108.07586 1911.12606
1908.08215
2004.10894, 2108.07586
ATLAS-CONF-2023-029
1908.08215 1911.12606
To appear
2103.11684 2108.07586
2204.13072
2201.02472 2201.02472
2205.06013
2205.06013
2011.07812
2205.06013
2011.10543
2103.11684 To appear
ATLAS-CONF-2018-003
2010.01015
1710.07171
2003.11956
2106.09609

Any hints or anomalies??

Run: 336678 Event: 1202524014 2017-09-26 18:00:56 CEST

nints or anomalies??

This talk:

- A <u>selection</u> of results from ATLAS and CMS with intriguing excess of events observed with respect to the SM: especially where excess appears to be observed in multiple channels / searches or interesting in the light of other anomalies ... cases worth following up with more data / additional searches
- Compare ATLAS and CMS where available
- Results with full LHC Run 2 data set (~140 fb⁻¹ at $\sqrt{s} = 13$ TeV) except where noted
- Caveat: by the nature of this talk, results shown are highly cherry-picked!

Searches for low- or high-mass resonances

Low mass di-photon search

Search in 70 < $m_{\gamma\gamma}$ < 110 GeV from CMS

- Following up on previous search with √s = 8 and 13 TeV data from 2012+2016 that observed local (global) significance of 2.8 (1.3)
 σ (PLB 793 (2019) 320) at 95.3 GeV
- LEP saw a small excess of events (~2σ) at m_H = 98 GeV in H(bb̄)
- In addition to continuum γγ background, contends with additional background from Drell-Yan → e⁺e⁻ with electrons faking photons
- Kinematic diphoton BDT used for signal selection

Low mass di-photon search

Excess previously seen in 2016 data persists, combined 2.9 (1.3) σ local (global) significance at **95.4 GeV**

Limits also set on $\sigma_H \times B(H \rightarrow \gamma \gamma)$ for additional SMlike Higgs boson

Low mass di-photon search

- converts to electron pair or not
- categorization

Low mass di-tau search

Search for additional Higgs bosons in $\tau\tau$ final state from CMS

JHEP 07 (2023) 073

GeV with local (global) significance of 3.1 (2.7) σ 2.6 (2.3) σ at 95 GeV

12

High mass ZZ search

Search for heavy resonance decaying to ZZ in 200 $< m_{ZZ} < m_{ZZ}$ 2000 GeV in 4I and 2I2v final states from ATLAS

- Considers heavy Higgs in narrow width approximation (NWA), large width assumption (LWA) as well as spin-2 resonance (KK graviton)
- Both gluon fusion (ggF) and VBF production considered for NWA

Results in LWA

EPJC 81 (2021) 332

High mass ZZ search

Results in NWA

ggF: maximum deviation at **240 GeV**, with local (global) significance of 2.0 (0.5) σ

VBF: maximum deviation at **620 GeV**, with local (global) significance of 2.4 (0.9) σ

High mass W+W- search

Search for heavy resonance decaying to W+W- in 115 < $m_{WW} < 5000 \text{ GeV}$ in $2l_2v$ final states from CMS

- Search in final states with $ee/e\mu/\mu\mu$
- Considers range of signal width hypotheses
- Both gluon fusion and VBF production considered with different relative contributions
- Interpretation also in MSSM scenarios, 2HDM
- DNNs used for event classification, mass reconstruction

High mass W+W- search

Largest local (global) significance of 3.8 (2.6) σ found for $f_{VBF} = 1$ scenario at 650 GeV

High mass W+W- search

ATLAS search in eµvv final states, 300 < m_{WW} < 4000 GeV

- Considers additional Higgs-like resonance in NWA, and other spin 0/1/2 models
- Gluon fusion and/or VBF production considered depending on model
- Transverse mass between dilepton system and E_T^{miss} used as signal discriminant

ATLAS-CONF-2022-066

No significant excess observed!

High mass di-photon search

Search for resonance decaying to yy

- Searches from ATLAS and CMS consider spin-0 and spin-2 resonances
- Fit to di-photon mass spectrum

1.3 TeV for broad resonance model: 2.6 (0.8) σ local (global) significance

ATLAS: most significant excess at 684 GeV: 3.3 (1.3) σ local (global) significance

Searches for heavy particles decaying to scalars

Search for heavy resonance $X \rightarrow YH$

Searches targeting resonance decaying to H and additional scalar Y • Motivated by NMSSM, TRSM (SM extended by two real singlet fields)

arXiv:2310.01643

local (global) significance for $Y(bb)H(\gamma\gamma)$

Most significant excess at $m_x =$ **650 GeV, m_Y = 90 GeV**: 3.8 (2.8) σ

local significance (but large LEE)

Search for heavy resonance $X \rightarrow YH$

Searches targeting resonance decaying to H and additional scalar Y Motivated by NMSSM, TRSM (SM extended by two real singlet fields)

arXiv:2310.01643

Most significant excess at $m_x =$ **650 GeV, m_Y = 90 GeV**: 3.8 (2.8) σ local (global) significance for $Y(bb)H(\gamma\gamma)$

arXiv:2404.12915

However, no excess seen by ATLAS $X \rightarrow Y(bb)H(\gamma\gamma)$ search at same masses: largest deviation at $(m_x, m_y) = (575,$ **200)** GeV with 3.5 (2.0) σ local (global) significance)

Search for $A \rightarrow Z(II)H(t\bar{t})$

- dominates when $m_A m_H > 250 \text{ GeV}$
- leptonic tī decays

Search for $A \rightarrow Z(II)H(t\bar{t})$

Search for CP-odd Higgs decaying to heavy CP-even Higgs and Z

- Motivated by 2HDM, $m_A > m_H$ favored by electroweak baryogenesis models featuring strongly first order EW phase transition: $A \rightarrow ZH$ dominates when $m_A - m_H > 250 \text{ GeV}$
- $H \rightarrow t\bar{t}$ becomes dominant when $m_H > 2 m_t$. ATLAS search targets semileptonic tī decays
- Mass difference $\Delta m = m_A^{cand} m_H^{cand}$ as signal discriminant

CMS-PAS-B2G-23-006

Searches in b+τ final states for leptoquarks, vector-like leptons

Leptoquarks coupled to 3rd generation

Search for $LQ \rightarrow b\tau$

- Motivated by B anomalies
- Consider single and pair production, non-resonant production

Coupling with local significance 2.8 coupling strength λ =2.5:

~

Vector-like leptons

Search for pair production of VLLs in final state with ≥3 b-tagged jets and upto 2 τ s with CMS 2017+2018 data

- "4321 model", motivated by B anomalies
- EW pair production of VLLs with decay via virtual vector LQ coupled to 3rd generation
- Fit to N_{jet} or DNN distribution in different event categories

PLB 846 (2023) 137713

Many more interesting results ...

Did not have time to cover several others, including ...

- Doubly charged Higgs: excess of 3.3 (2.5) σ local (global) for m_H±± 450 GeV (Georgi-Machacek model) in same-sign WW scattering at ATLAS (JHEP 04 (2024) 026)
- Searches for Spin-1/Spin-2 resonances e.g.:
 - W' \rightarrow tb, CMS: 2.6 (2.0) σ local (global) significance for W' mass 3.8 TeV (arXiv:2310.19893)
 - W'/Z' in heavy vector triplet model / spin-2 graviton in bulk model decaying to VV/VH, CMS: 3.6 (2.3) σ local (global) at 2.1, 2.9 TeV (PLB 844 (2023) 137813)
- And more ...

Summary

Vast and rich program of experimental searches for new physics at ATLAS and CMS with LHC Run 2 data. Philosophy: leave no stone unturned!

No observation of BSM physics yet, but some intriguing excesses seen at the 2-3 σ level worth following up ...

- Some excesses in extended Higgs sector searches across multiple final states ...
- low-mass γγ, ττ (90-95 GeV)
- high-mass dibosons (~650 GeV)
- Some excesses seen in one experiment but apparently not the other ...
 - $X \rightarrow Y(bb)H(\gamma\gamma)$ at $(m_X, m_Y) = (650, 95)$ GeV in CMS (not confirmed by ATLAS)
- $A \rightarrow Z(II)H(t\bar{t})$ at $(m_A, m_H) = (650, 450)$ GeV in ATLAS (not confirmed by CMS)
- $LQ \rightarrow b\tau$ at high mass in CMS (appears excluded by ATLAS)
- More searches to come with Run 2 data, and looking forward to Run 3 and HL-LHC to follow up ...

Searches using Run 3 data at $\sqrt{s}=13.6$ TeV ramping up

Expanding sensitivity through variety of approaches: ML, new triggers and data-processing techniques, and more ...

