10th International Conference on Gravitation and Cosmology: New Horizons and Singularities in Gravity (ICGC 2023)

Contribution ID: 206 Type: Poster

Dependence of maximum mass on finite strange quark mass of anisotropic strange quark star in Finch-Skea geometry

A class of relativistic compact objects is analysed in modified Finch-Skea geometry described by modified MIT bag model equation of state of the interior matter. The bag constant B plays an important role in determining the physical features of strange star. In this work we have considered the effect of finite strange quark $(m_s\ 0)$ on the stability of quark matter inside a star. We have noted that inclusion of strange quark mass affects the gross properties of stellar configuration such as maximum mass, compactness, surface red-shift, radius of strange quark stars. We have considered three compact objects which are supposed to be strange stars namely (i) 4U 1820-30 (ii) VELA X-1 and (iii) PSR J 1903+327 for physical application. It is noted that the range of B is restricted from 57.55 to $B_{max}(MeV/fm^3)$ for which strange matter might be stable relative to iron (^{56}Fe). However, we have also observed that the metastable and unstable strange matter depends on B and m_s . All energy conditions held well in this approach. Stability in terms of TOV equation, Herrera cracking condition, adiabatic index and Lagrangian perturbation of radial pressure are studied in this paper.

Email

bishnu8116@gmail.com

Affiliation

Cooch Behar Panchanan Barma University

Author: DAS, Bishnu (Department of Physics, Cooch Behar Panchanan Barma University)

Presenter: DAS, Bishnu (Department of Physics, Cooch Behar Panchanan Barma University)

Session Classification: Astrophysical Relativity

Track Classification: Astrophysical Relativity