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Data
Engineering for outliers fixing / resampling:

Useless without any pattern

Information (Average level of Surprise / Uncertainty)
Data shows pattern

Knowledge
Learning is involved using information, provides
interpretation, understanding of unknown phenomenon.

Processor uses data to generate a connected mapping using some mathematical
functions / models to understand unknown data.
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Machine Learning

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

� improve their performance P

� for some task T

� with experience E.

A well defined learning task is given by < P, T, E >.

Improve on task T with respect to Performance metric P based on
experience E
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Traditional Programming

Data

Program / Logic
Computer Output / Answer

Machine Learning

Data

Output / Answer
Computer Program / Logic

Apply the generated logic to future unknown Data to get some output /
result.
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Data Engineering

TOOLS:

� TensorFlow: Open source ML Lib developed by Google.

� PyTorch: Open source Deep learning framework know for dynamic
computation graph, intuitive design and support for dynamic NN.

� Scikit-learn: Library with collection of tools for data preprocessing, feature
selection, model evaluation etc.

� Keras: A Deep learning API on the top of TensorFlow or PyTorch.

Big data Technologies for processing and Storing ML Data

� Hadoop: Open source Big data framework includes Hadoop Distributed File
System (HDFS) for distributed storage. Hadoop has the MapReduce
programming model for processing large datasets.

� Apache Spark: Open source framework for distributed data processing
provides libraries for various tasks including data preprocessing, ML, graph
processing. Its in-memory processing capabilities accelerate computations
using AI/ML. It overcomes limitations of Hadoop.
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Data / Outliers / Anomalies

� Outliers: Distribution or dataset having unusual input for
training.

� Overfitting: Outliers cause Overfitting.

� Sorting, grouping may help to detect Outliers.

� Anomaly may represent distribution or pattern but does not
accurately reflect dataset. Outliers may be Anomalies while
Anomalies are not Outliers.
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Classification Algorithm:Supervised Learning

Classification problem:
Model or function to separate data into multiple categorical classes i.e.
discrete values.
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Decision Tree : Classification

� Consecutive set of questions (nodes).

� Only TWO possible answers per question.

� Each question depends on previous answers.

� Final verdict (leaf) is reached after a given maximum number
of nodes.

• Easy to understand/interpret
• Good with multivariate data
• Fast training
• Single tree is NOT very strong⇒ Random Forests
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Decision Tree : Classification

� The topmost node is called Root Node.

� Root node learns to make partition on
the basis of attribute values.

� Partitioning is done in recursive
manner.

� Best attribute selection is heuristic and
best attribute becomes a decision
node.

� Easily capture non-linear patterns.

� It can be used for feature engineering
to predict missing data etc.

� Sensitive to noisy data and may overfit.

� Small variation may produce different
tree which can be fixed by bagging and
boosting.
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Random Forest: (Classification && Regression)

Green circle is hypothet-

ical path the tree took to

reach decision

� Random forest can be used for Regression
(numeric target) and Classification (categorical
target).

� Multiple decision trees are created using
different random sets of data and features.

� Predictions are made by voting for
classification and by averaging for regression.
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Supervised Learning

Supervised Learning:

Training data : {(x1, y1), . . . (xN , yN)}
xi: feature vector, yi: label (class) of ith data, g ∈ G: Hypothesis
space.
A learning algorithm seeks a function g : X → Y, where X is input
space and Y is output space.

Logistic Regression Model:
1. Estimates the probablity of occurrence of an event based on given
dataset of independent variables.
2. It is probability of a class.
3. Since outcome is probablity, dependent variable is bounded in
[0, 1]
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Supervised Learning

Supervised Learning:

Training data : {(x1, y1), . . . (xN , yN)}
xi: feature vector, yi: label (class) of ith data, g ∈ G: Hypothesis
space.
A learning algorithm seeks a function g : X → Y, where X is input
space and Y is output space.

Support Vector Machine (SVM):
1. Goal is to creat decision boundary segregating n-dim space into
classes.
2. Best decision boundary is called Hyperplane.
3. SVM : (a) Linear and (b) Non-linear.
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Performance Measurement for Classification

AUC-ROC :Performance measurement.
AUC:- Area Under the Curve.
ROC:- Receiver Operating Characteristics.
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Performance Measurement for Classification

AUC-ROC :Performance measurement.
AUC:- Area Under the Curve.
ROC:- Receiver Operating Characteristics.

ROC is probability curve plotted for “True Positive
Rate (TPR)” <Y-axis> against “False Positive Rate
(FPR)” <X-axis>.

AUC is degree of separability. Efficiency of a model
to separate classes.

TPR/Recall/Sensitivity = True Positive
True Positive + Full Negative

Specificity = True Negative
True Negative + Full Positive

FPR = 1-Specificity = Full Positive
True Negative + Full Positive .

A Good model has AUC→ 1 means good separabil-
ity of classes.
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ROC: Probability Curve.

Ideal measure of probability. Positive class (e.g. patient with disease, Neg-
ative class (e.g. No disease))

AUC=0.7 means the model may separate classes with 70% probability.
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ROC: Probability Curve.

AUC=0.5 is the worst situation where model is unable to distinguish.

AUC=0 means the model is recognising a positive class as negative and
vice versa.
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The Kernels

� Kernels (function) are a set of algorithms used for pattern
matching.

� Usually non-linear problems are solved by linear classifier -
“Kernel Tricks” « SVM ».

� The kernel function is applied on each data instance to map
the original non-linear observations into a higher-dimensional
space in which they become separable without computing the
coordinates of the data in a higher dimensional space.

� Kernel Trick allows us to operate in the original feature space .
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Kernels

� 2D dataset with 2 classes. Function to
separate 2 classes is required. Data is NOT
linealry separablein to 2 classes.

� One can fit a complex polynomial function
to separate the data.

� Data may be transformed into 3D.

� A linear decision boundary may be found
by fitting a linear classifier (a plane
separating data) - Hyperplane .

� Map the linear decision boundary back into
2D space. The result will be a non-linear
decision boundary in 2D
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Let us consider a regression model:
yi = w0 + w1 xi + w2 xi + ϵi

yi = WT xi + ϵi,
where, W = {w0,w1,w2} are weights.
Error: ϵi = (WT xi − yi).

Let xa = [xa1, xa2] and xb = [xb1, xb2] ∈ R2.
3D mapping, xi → ϕ(xi) : xT

a xb → ϕ(xa)Tϕ(xb) and
back to 2D,

K(xa, xb) = ϕ(xa)Tϕ(xb)
Let, K(xa, xb) = (xT

a xb)2 = (xa1 xb1 + xa2 xb2)2,

= (x2
a1 x2

b1 + +2xa1 xa2 xb1 xb2 + x2
a2 x2

b2).

AND can be decomposed into ϕ(xa) =


x2

a1√
2xa1 xa2

x2
a2

 and ϕ(xb) =


x2

b1√
2xb1 xb2

x2
b2

.
In place of dot product we plug kernel K.
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Kernels

Vectors: xa and xb.
Linear Kernel: K(xa, xb) = xa xb.
Dot product measures similarity or distance in original feature space.

Polynomial Kernel: K(xa, xb) = (xa xb + c)d,
d is the degree of the polynomial determines degree f nonlinearity.

Gaussian Kernel :: Radial Basis Function (RBF): K(xa, xb)=e−γ∥xa−xb∥
2
.

The γ tunes the performance of the Gaussian kernel.

Laplace Kernel: K(xa, xb)=e−γ∥xa−xb∥.
∥ xa − xb ∥ is Manhattan distance or L1 norm between input vectors. It
places less weight on large distance between input vectors than Gaussian
kernel making it robust to Outliers.
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Kernel Characteristics

� Mercer’s condition: Ensures that the kernel function is positive semi
definite, which means that it is always greater than or equal to zero.

� Positive definiteness: If kernel is always greater than zero except
for when the inputs are equal to each other.

� Non-negativity: The kernel produces non-negative values for all
inputs.

� Symmetry: A kernel function produces the same value regardless of
the order in which the inputs are given.

� Reproducing property: A kernel function satisfies the reproducing
property if it can be used to reconstruct the input data in the feature
space.

� Smoothness: The kernel function produces a smooth
transformation of the input data into the feature space.

� Complexity: More complex kernel functions may lead to over fitting
and reduced generalization performance.
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Ensemble Learning : Supervised

Ensemble Learning:

Combine the strengths of multiple models to make a single robust
model less likely to overfit data.

Techniques:

� Averaging (for regression)

� Bagging (Bootstrap Aggregation),

� Boosting and

� Stacking (Stacked Generalization)

TIFR Machine Learning Feb 8, 2024 25 / 35



Bagging : Ensemble Learning

It can be used for both regression and classifi-
cation.

Bootstrap Sampling:
Randomly ’n’ subsets of original data are
sampled with replacement. Reduces of risks
of overfitting increasing accuracy.

Original training dataset : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Resampled training set #1: [2, 3, 3, 5, 6, 1, 8, 10, 9, 1]
Resampled training set #2: [1, 1, 5, 6, 3, 8, 9, 10, 2, 7]
Resampled training set #3: [1, 5, 8, 9, 2, 10, 9, 7, 5, 4]

Some samples may be kept out of Sampling for verifica-
tion of prediction.
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Bagging : Ensemble Learning

Base Model Training:

� Multiple base models are used.

� Each base model is independently trained
using learning algorithm like decision tree,
SVM or Neural Networks.

� Training is on different bootstrapped subset
of data and can be parallelised.

� Each models are called "Weak Learners" as
they may not be highly accurate of their own.
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Bagging : Ensemble Learning

Aggregation:

� After training of all the base models,
prediction is being made on unseen data.

� The Predicted class label is chosen on
majority voting. <Classification>

� The final Prediction value is determined by
averaging of the predictions from all base
models. <Regression>
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Bagging : Ensemble Learning

Out of Bag Evaluation:

� Some samples excluded in the bootstrapping
are "Out-of-Bag" Samples.

� Out-of-Bag samples may be used to
estimate the model performance
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Bagging : Ensemble Learning

� Improved Predictive Performance:
outperforms single classifier

� Robustness: Reduces impact of outliers and
noises enhancing stability

� Reduced Variances: Since each base model
is trained on different subsets, aggregated
model’s variance is reduced compared to
indivudal model.

� Parallelization: Parallel processing of
individual training reduces time.

� Flixibility: Wide range of algorithms can be
used like DecisionTree, Random forests,
support vector machine (SVM) etc.
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Boosting : Ensemble Learning

• Boosting is a sequencial method
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Boosting : Ensemble Learning

• Boosting is a sequencial method

• First a model is built from training data.

• Second model is built with an effort to correct
errors in earlier model.

• Procedure continues
AND
models are added until Either the complete
training data is predicted correctly OR maximum
number of models have been added.

• Types (Important): Gradient Boosting, XG-
Boost, AdaBoost, CatBoost
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XGBoost (Extreme Gradient Boosting): Supervised Learning

Training data with multiple features xi is used to predict target variable ŷi by fitting.

� Model (e.g. Linear Model): Prediction ŷi = Σ jθ j xi j

� Training finds Best parameter θi using Objective function measuring
degree of fitness.

� Objective function: ob j(θ) = L(θ) + Ω(θ):
L(θ)= training loss function, Ω(θ) = regularization function.

� L: degree of prediction w.r.t. training data.

� Ω: controls complexity of the model helping to avoid Overfitting.
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XGBoost (Extreme Gradient Boosting): Supervised Learning

ob j(θ): (Loss L(θ) + Regularization Ω(θ)).
L(θ):
(a) Mean Squared Error (MSE): L(θ) = Σi (yi − ŷi)2

(b) Logistic: L(θ) =
∑

i

[
yi ln
(
1 + e−ŷi

)
+ (1 − yi) ln

(
1 + eŷi

)]
Ω(θ): Fit a step function visually given input data
points. Which of the 3 solutions is best fit?

Tradeoff between L and Ω is "Bias-Variance trade-
off".
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XGBoost (Extreme Gradient Boosting): Supervised Learning

Classify: who likes com-
puter game.
Final score=Σ individual
tree scores.

XGBoost: Decision Tree Ensemble: Set of
Classification and Regression trees (CART).

Leaf also contains score.

2 trees complement each other:
ŷi =
∑K

k=1 fk(xi), fk ∈ F.

F: set of all possible CARTS, fk : function in
functional space F, K: number of trees.

ob j(θ) =
∑n

i l (yi, ŷi) +
∑K

k=1 w ( fk)
w( fk): complexity depends on the scores.

Boosted Decision Tree Random Forrest!

ONE predictive service code : Different Training.
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XGBoost (Extreme Gradient Boosting): Supervised Learning

Complexity

Define tree f (x) = wq(x), w ∈ RT , q : Rd → {1, 2, 3, . . .T }
w=scores on leaves, q= fn assigning each data point to corresponding leaf,
T= number of leaves.

w( f ) = γT +
1
2
λ

T∑
j=1

w2
j .
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XGBoost (Extreme Gradient Boosting): Supervised Learning

Loss Function
Prediction values:

ŷ(0)
i = 0

ŷ(1)
i = f1(xi) = ŷ(0)

i + f1(xi)

ŷ(2)
i = f1(xi) + f2(xi) = ŷ(1)

i + f2(xi)

. . .

ŷ(t)
i =

t∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi)

At each step, tree is selected by optimized objective function.

ob j(t) =

n∑
i=1

l
(
yi, ŷ

(t)
i

)
+

t∑
i=1

w ( fi) =
n∑

i=1

(
yi −
(
ŷ(t−1)

i + ft(xi)
))2
+

t∑
i=1

w( fi), (MSE)

Objective at step t ≡ goal for new tree
n∑

i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)
]
+ w( ft)

. gi = ∂ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) hi = ∂

2
ŷ(t−1)

i

l(yi, ŷ
(t−1)
i )
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XGBoost (Extreme Gradient Boosting): Supervised Learning

ob j(t) ≈

n∑
i=1

[
giwq(xi) +

1
2

hiw2
q(xi)

]
+ γT +

1
2
λ

T∑
j=1

w2
j ,

=

T∑
j=1

w j

∑
i∈I j

gi +
1
2

∑
i∈I j

hi + λ

w2
j

 + γT, ( ∀ data in same leaf gets same score.)

=

T∑
j=1

[
G jw j +

1
2

(
H j + λ

)
w2

j

]
+ γT ⇒ I j = {i | q(xi) = j} .

ws
j are independent.

w⋆j = −
G j

H j+λ

ob j⋆ = − 1
2

∑T
j=1

G2
j

H j+λ
+ γT

Smaller the score is,
the better the structure is.
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AdaBoost (Adaptive Boosting) : Ensemble Learning

� Enhances weights of misclassified events after each training

� Reduces weights of correctly classified events so that future
trees learn better

� Iteration continues until weight of misclassified . 50%

� Final weight is the sum of all classifiers weighted by their errors
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Neural Networks

• Artificial system being inspired from biological neural networks.

x1

x2

xn

Σw ⋆ x
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Neural Networks

• Artificial system being inspired from biological neural networks.
• The computational model is based on Threshold Logic.
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Neural Networks

• Artificial system being inspired from biological neural networks.
• The computational model is based on Threshold Logic.
• It is a type of ML process that uses interconnected nodes/neurones in a
layered structure called as Deep learning.
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Neural Networks

• Artificial system being inspired from biological neural networks.
• The computational model is based on Threshold Logic.
• It is a type of ML process that uses interconnected nodes/neurones in a
layered structure called as Deep learning.
• Algorithm updates itself through "backpropagation" as per optimization
strategy.

x1

x2

xn
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w1

w2
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Activation
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