
Introduction to Track Fitting

• How many parameters are required to define an charged trajectory in 

magnetic field ?

• In 2D, how many free parameters to define a straight line ?

• How many are in 3D ?

– (x,y,z) + (cos, cos, cos) : 6

– (x,y,z) + (, ) : 5

– In a plane/surface (One constraint) → Four free parameters

• Trajectory in magnetic field : Four + one for the curvature : Total 5  



Track fitting : Introduction
• These hit points belongs to a track (track finder) is given

– Required to estimate the all track parameters p

( Τ(𝝆,𝚽𝟎) 𝒙, 𝒚 /(𝒅𝟎,𝒛𝟎),𝝓, 𝒄𝒐𝒕 𝜽 , Τ𝒒 𝒑T) or 𝒙,𝒚,
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• d0 : signed distance of closest approach to z-axis

• z0 : z of signed closest approach

• : Azimuthal angle of closest approach

•  :  Polar Angle of track

• q/pT : Charge-signed curvature

Extract five parameters 

from these hit points

• Analytical eqn of helical path can not be used directly

• Magnetic field is not uniform

• −dE/dx of charge particle, change in curvature

• Use numerical approach

An estimated one (from simple curvature etc)

Based on starting parameters, extrapolated points 

will vary (a function of p, f(p)). Minimise  𝝌𝟐 =
σ𝒙,𝒚σ𝒊 𝒎𝒊 − 𝒇 𝒑 𝒊

𝟐 to obtain track parameters p. 

Takes care of any correlation between measured points



Track Fitting : Introduction

• The aims of track fitting :

– Compute the best estimate of the track parameter

– Compute the covariance matrix of the estimate

– Compute test statistics

• Track finding has to be :

– Fast

– Robust against mistakes of the track finding

– Robust against wrong assumptions on the errors

– Numerically stable

• There are several types of mistakes :

– Misses : A hit is missing from a track candidate

– Contamination : A track candidate contains a noise or a background hit

– Loss : There is no candidate for a track

– Ghost : A candidate is generated that does not correspond to track



Few remarks on track model
• The eqn of motion can be solved with sufficient precision 

• Precise measurement of magnetic field and easily accessible 

• Known material for estimation of multiple scattering, energy loss etc

• Removal of noise hits etc, wrong measurements

• Fit should have

– Bias free, Variance, Consistency, Robustness

• Test for goodness of fit

– Pull quantities, for correct estimations of track parameters these three condition

must be fulfilled

• The track model is correct  

• Covariance matrix of the measurement must be correct  

• Reconstruction programme must work properly 

– 2 test

• What are those track parameters ?

– { (,0)/(x,y), , cot(), q/pT } or { x,y, dx/dz, dy/dz, q/p }

– Continuity with respect to small changes

– Errors should be close to Gaussian (1/p, not p)

– Good linear approximation to track propagation (reduces the effect of second

derivatives)



Least Square fitting



Extrapolation of track in presence of magnetic field

• No simple or direct propagation in case of inhomogeneous magnetic field

– Track propagated through any standard package, e.g., Runge-Kutta method or

– Assume uniform magnetic field locally

• Transform co-ordinate system such that magnetic 

field is   along Z' axis 

• Get distance to the crossing point of helix and plane

• Get the track parameters at the crossing point  

• Return back to lab frame

• Step size is ~mm, need optimisation of CPU time 

and performance

• For collider expt in barrel part, where magnetic field 

is uniform and in Z-direction, an azimuthal angle after 

a pathlength along the helix, s is 𝝓 𝒔 = 𝝓𝟎 +
𝒉 𝒔 Τ𝒄𝒐𝒔𝝀 𝑹𝑯 , 𝒘𝒉𝒆𝒓𝒆 𝝀 = Τ𝝅 𝟐 − 𝜽 and

Where RH is the radius of helix [= Τ𝑷 𝒄𝒐𝒔𝝀 𝒌𝒒𝑩 ] , 

k = 0.3 (GeV/c)T−1m−1 and 

𝒉 = −𝒔𝒊𝒈𝒏 𝒒𝑩𝒛 = ±𝟏 = 𝒔𝒊𝒈𝒏 Τ𝒅𝝓 𝒅𝒔

𝒙 𝝓 = 𝒙𝟎+ 𝒉𝑹𝑯 𝒔𝒊𝒏𝝓− 𝒔𝒊𝒏𝝓𝟎

𝒚 𝝓 = 𝒚𝟎 − 𝒉𝑹𝑯(𝒄𝒐𝒔𝝓 − 𝒄𝒐𝒔𝝓𝟎)
𝒛 𝝓 = 𝒛𝟎 + 𝒉𝑹𝑯 ⋅ 𝒕𝒂𝒏𝝀 ⋅ 𝝓 −𝝓𝟎



Some more remarks
• In a pixel detector or in a double-sided silicon strip detector, m is two dimensional.

• In a one-sided silicon strip detector, it is one-dimensional.

• In a drift chamber or MWPC with several layers, the measurement may be the result 

of an internal track reconstruction. In this case the vector m may be four or five-

dimensional.

• Strictly, the estimate is optimal only if the following assumptions hold:

– The model is linear.

– The noise is Gaussian.

– The covariance matrix of the noise does not depend on the parameters.

• If the model is linear, it is still the best linear estimate.

• In practice, none of the assumptions hold exactly.



Simple example

• Uniform magnetic field along Z-axis, bending is only in X-Y plane, 

• Approximate radius of curvature can be determined using first and last in        

silicon detector, as well as the centre of the circle, 

• Use that and fit eqn of circle in X-Y plane to track parameters in bending plane

• Use again the same  = slope (cot)  z + intersect eqn, to obtain cot and z of 

track.  Similarly also able to get  and pT in by fitting in r- plane.

• combining these two independent sets obtain full track parameters ( 0, z, cot(), ,  

q/p) and its error.



Kalman filter and fit technique

• A recursive or stepwise procedure for estimating the state vectors of a linear or 

discrete dynamic system (e.g., a track points in a different layer).   

• Originally introduced in 1960, and was used in optimal signal processing, 

navigation, spacecraft tracking   

• 1983, P. Billoir first proposed this technique in HEP (did not know that he was        

deriving Kalman technique)  

• Since the early 90's, most of the HEP experiments have moved to this technique.

• Kalman filter brings additional benefits to tracking:

– Local treatment of multiple scattering

– Use in local pattern recognition

– Integrating (non-Gaussian) energy loss in the track model

• Kalman filter also exists for vertex reconstruct

A329, 493 CPC96, 189 A241, 115 NIM 176, 29

 = detector + ms, 

ms is not diagonal. LSM requires inversion of the n  n covariance matrices and 

computing time necessary to invert grows as n3.  The reality is even worse, in 

presence of ambiguities and outlier



Kalman filter



Kalman filter



Kalman filter

• Where

– pk : State vector {r, , cot(), , q/pT }, (51)

– Ck : Stage covariance matrix, (55)

– Fk : Propagator matrix of state vector pk, ,(55)

– Qk : Noise matrix due to multiple scattering/ionisation loss, (55)

• Some basics are in NIMA 329 (1993) 493

– mk (X(Y) position measurement, (21)

– Vk : Error matrix of mk , [z, ] (22)

– Ak : Measurement function (f/pk from expression mk = f(pk)), (25)

– Kk : Kalman gain factor, (52)

– Kk
1 : (I –Kk Ak) and Kk

2 = Kk



Momentum without magnetic field 

• Path length : Where measurement of curvature is 

poor due to large multiple scattering (JINST 13 

(2018) no.09, P09015 ) or poor position measurement

0.6 < |cosgen| < 0.7

0.4 < |cosgen| < 0.5



Plate containing

free hydrogen

(paraffin wax)

Incident 

neutron

direction

proton tracks ejected
from paraffin wax

Recoiling Nitrogen nuclei

Assume that incident neutral radiation consists

of particles of mass m moving with velocities v < Vmx

Determine maximum velocity of recoil protons (Up) and Nitrogen nuclei (UN) from 

maximum observed range

Up =                 Vmx
2m

m + mp

UN =                 Vmx
2m

m + mN

From non-relativistic energy-momentum 

Conservation mp: proton mass; mN: 

Nitrogen nucleus mass

Up m + mN

UN m + mp

=
From measured ratio Up / UN and known values of mp, mN

determine neutron mass:  m  mn  mp

Present mass values : mp = 938.272 MeV/c2; mn = 939.565 MeV/c2

Neutron mass



Momentum without magnetic field 

• Use angle of multiple scattering  (NIMA 867 (2017) 182, concept for LAr TPC)

– Bayesian analysis on a series of Kalman filter
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Momentum using angle of multiple scattering 

• New J Phys 14 (2012) 013026 (OPERA Lead-emulsion target)

Compare results of MS and 

path length

TB

MC

Data



Momentum using angle of multiple scattering 
• JINST 12 (2017) no.04, P04010 (ICARUS ~1kt T600 LAr TPC)

Compare results of MS and path length



Dimuon mass over range from ~1GeV to ~100 GeV



Calibration through mass peak

BELLE



Exercises

• Using input from the track finder algorithm and other information

– Initialise the track parameters

–Estimate the track parameters by imposing least square fit

–Compare with generator level information

• Include the ionization energy loss and multiple scattering in the fit to 

improve resolutions

•

• Using simple equation of circle, calculate the transverse momentum of 

muon tracks


