Detector Simulation — Geant4

Sunanda Banerjee
Abhijit Bhattacharya
Deepak Samuel

EHEP 2024 School

GEANT4: Physics Process & List

Detector Simulation

Physics Lists

e Geant4 provides the possibility of simulating the physics processes of a
variety of particles

e each such particle can have interactions of different types: strong,
electromagnetic or weak and each such interaction can be described by
different models

e unlike many other simulation tools, Geant4 leaves it to the user to decide
on which particles, which interactions and which models are to be used
during the simulation step

e declaration of the list of particles and the choice of models is done using
the physics list

e the toolkit provides handles for a few well-defined physics lists which are
suitable for certain specific types of application

Detector Simulation

Processes in Geant4

Electramagnet

'Trnnspomtio n A L

| Procems |

| Management Photolepton_
~ hadmon

l—_.. J -

Parametrisation A . - |
IJEﬁ | G Decay ' Hadwonic

* Processes describe how particles interact with material or with a volume

e Three basic types:
* At rest process (e.g. decay at rest)
e Continuous process (e.g. ionisation)
e Discrete process (e.g. Compton scattering)

e Transportation is also a process
* Interacting with the volume boundary

* A process which requires the shortest interaction length limits the step

Detector Simulation

Types of Processes

e There are several types of modules which can be combined to define the
physics list
 electromagnetic physics
e extra physics processes for photons and leptons
e decays
e hadronic elastic
e hadronic inelastic
e stopping particles and capture processes
e jon nuclear interactions
e step limits
e others

e The others category includes optical photons, exotic physics processes,
thermal neutron transport models,

e The user needs to define the physics list through the 3 handles:
e RegisterPhysics
e ReplacePhysics
e RemovePhysics

Detector Simulation

An Example of Making a Physics List

// EM Physics
RegisterPhysics(new G4EmStandardPhysics(verbosity));

// Synchroton Radiation & GN Physics
G4EmExtraPhysics* gn = new G4EmExtraPhysics(verbosity);
RegisterPhysics(gn);

// Decays
this->RegisterPhysics(new G4DecayPhysics(verbosity));

// Hadron Elastic scattering
RegisterPhysics(new G4HadronElasticPhysics(verbosity));

// Hadron Physics
RegisterPhysics(new G4HadronPhysicsFTF BIC(verbosity));

// Stopping Physics
RegisterPhysics(new G4StoppingPhysics(verbosity));

// Ion Physics
RegisterPhysics(new G4IonPhysics(verbosity));

// Neutron tracking cut
RegisterPhysics(new G4NeutronTrackingCut(verbosity));

Detector Simulation

Electromagnetic Physics

e Applicable to
e electrons and positrons
e v, X-ray and optical photons
® muons
e charged hadrons
*ions

e Several physics models are available.
Standard EM physics is extended to low
energies using many data-driven
techniques to improve the quality of
simulation at low energies

o All obey the same abstract Process
interface: transparent to tracking

Detector Simulation

Models available for

Multiple scattering
Bremsstrahlung
lonization
Annihilation
Photoelectric effect
Compton scattering
Pair production
Rayleigh scattering
y conversion
Synchrotron radiation
Transition radiation
Reflection, refraction
Cherenkov radiation
Scintillation

Geant4 Options for EM Physics

* There are 10+ options for EM physics

* opt1 (EMV): a fast but less precise version used in HE physics lists

* opt2 (EMX): also a fast and less precise version for HE physics lists

* opt3 (EMY): provides a more accurate simulation of photons and charged
hadrons

* opt4 (EMZ): most precise but slow description of EM physics for HE applications

* LIV: similar to opt3 but models for photos and electrons make use of Livermore
set of models

* PEN: similar to opt3 with models for photons and electrons making use of
Penelope set of models

* _(GS: substitute Urban multiple scattering models with the Goudschmidt-
Sanderson model

* LE:low energy WentzelVI model is used for multiple scattering

* WVI:. WentzelVI model and ATIMA ion ionisation models are used for a better
description of multiple scattering

e _SS: single scattering models used on top of standard EM configuration

* Please note that the same model describes EM physics over the entire energy
region

Detector Simulation

Hadronic Processes

e Hadronic processes are often implemented in terms of a model class

e There are usually several models for a given process
e user must choose
e can, and sometimes must, have more than one per process

e A process must also have cross sections assigned
* here too, there are options

e Default cross-section sets are provided for each type of hadronic process
e fission, capture, elastic, inelastic
e can be overridden or completely replaced

e Different types of cross-section sets exist
e some contain a few numbers to parametric the cross-section as a function
of energy
e some represent large databases
e some are purely theoretical (equation driven)

Detector Simulation 9

Alternative Cross Sections

e Cross-section databases are available for low-energy neutrons
e G4NDL available among the Geant4 distribution files
e | ivermore database (LEND) is also available
e these are available with or without thermal cross-sections

e Cross section table is available for medium energy neutrons and protons
e 14 MeV < E <20 MeV

e Several alternatives exist for ion-nucleus cross-section

o
t
o

nese are empirical and parametrised cross-section formulae with some
neoretical insight

nese are good for E/A< 10 GeV

e Alternative cross-sections also exist for pion cross-section

Detector Simulation 10

Cross Section Management

GetCrossSection()
$: sees last set

‘ loaded within
energy range

o)

O I

o L/ -
3 SOOI . ORI
O

O |

n Set 3

§e

S

] | Set 2

Detector Simulation 11

Models in Hadronic Interactions

e Data-driven models: When sufficient data are available with sufficient
coverage over the phase space, a data-driven approach is the optimal way
e neutron transport, photon evaporation, absorption at rest, isotope
production, inclusive cross section,

e Parametrised models: Extrapolation of cross sections and parametrisation
of multiplicity distributions and final state kinematics
e adaptation of GHEISHA in some earlier versions of Geant4

* Theory-based models: These include a set of theoretical models describing
hadronic interactions depending on the addressed energy range
e diffractive string excitation, dual parton model or quark-gluon string
model at medium to high energies
e intra-nuclear cascade models air medium to low energies
e nuclear evaporation, fission models, at very low energies

Detector Simulation

Data Driven Hadronic Models

e These are characterised by lots of data on
® Cross sections
e angular distributions
e multiplicities, etc.

e To get interaction length and final state, these models depend on
interpolation of data
* Cross sections, Legendre coefficients, ..

e Examples:
e neutrons with E <20 MeV
e coherent elastic scattering (pp, np, nn)
e radioactive decays

Detector Simulation 13

Theory Driven Hadronic Models

e These are dominated by theoretical arguments (QCD, Glauber theory,
exciton model, ...)

e Final states (number and type of particles in the final sate with their energy
and angular distributions) are determined by sampling theoretically
calculated distributions

e This type of models is preferred as they are the most predictive
e Examples:
e quark-gluon string models (projectiles with E > 20 GeV)

e intra-nuclear cascade models (intermediate energies)
e nuclear de-excitation and break-up

Detector Simulation 14

Parametrised Hadronic Models

e Current versions do not contain any parametrised version. In versions
preceding Geant4 10.0, two models existed. They were re-engineered
versions of the Fortran Gheisha code used in Geant3

e These models depended mostly on fits to data with some theoretical
guidance

e Two such models existed:
e Low Energy Parametrised (LEP) for E <20 GeV
e High Energy Parametrised (HEP) for E > 20 GeV
e each type referred to a collection of models (one for each type of hadron)

e These codes were fast and existed for all types of particles. But they were
not detailed enough and there was no-one to maintain these codes

Detector Simulation 15

Partial Hadronic Model Inventory

At rest
absorption, u,

7, K, anti-p
WD S et <8

Radioactive

High precision
neutron

Fermi breakup
Multifragment

1TMeV 10MeV 100MeV 1GeV 10GeV 100 GeV 1TeV

Detector Simulation 16

Inelastic Hadronic Interactions

* No single model for hadron inelastic process can cover the entire energy
region required in a high-energy physics experiment
e Quark-gluon string models are good at high energies
e Nuclear cascade models are good at medium and low energies
e At very low energies, models for fission and pre-combination are required

e S0 all physics lists for inelastic hadronic interaction combine a number of
models

Detector Simulation

Physics List Library

e There are a number of Physics Lists available in the Geant4 library which can be
directly incorporated into the user code
e FTFP_BERT High Energy Experiments
e FTFP_BERT_ATL
e FTFP_BERT_HP
e FTFP_BERT_TRV
 FTFP_INCLXX
e FTFQGSP_BERT

e FTF_BIC

e QBBC Medical and Space Physics Applications

e QGSP_BERT Former default for High Energy Experiments
e QGSP_BERT_HP

e QGSP_BIC Cosmic Ray applications

e QGSP_BIC_AIHP

e QGSP_BIC_HIP

e QGSP_FTFP_BERT

e QGSP_INCLXX

e QGS_BIC

e Shielding Recommended for shielding studies
e ShieldingLEND

e | BE

e NuBeam

Detector Simulation

Main Program

e Simple example of the main program:

#include "G4RunManager.hh"

#include "G4UImanager.hh"

#include "Randomize.hh"

#include "time.h"

#include "MyDetectorConstruction.hh”
#include "MyEventAction.hh"

#include "MyPrimaryGeneratorAction.hh"
#include "G4PhysListFactory.hh"
#include "QGSP_BERT.hh"

int main(int argc,char** argv) {
// Choose the Random engine
CLHEP: :HepRandom: : setTheEngine(new CLHEP::RanecuEngine);
// Set random seed with system time
G4long seed = time(NULL);
CLHEP: :HepRandom: : setTheSeed(seed) ;

// Construct the default run manager, which manages start and stop simulation
G4RunManager * runManager = new G4RunManager;

// Set mandatory initialization classes:

// ——— e S e

// Initilization detector construction class
MyDetectorConstruction* detector = new MyDetectorConstruction;
runManager->SetUserInitialization(detector);

G4PhysListFactory factory;
runManager->SetUserInitialization(factory.GetReferencePhysList("QGSP_BERT"));

Detector Simulation

Main Program (cont)

// Set user generator action class
MyPrimaryGeneratorAction* genAction = new MyPrimaryGeneratorAction();
runManager->SetUserAction(genAction);

// Set user event-action class
MyEventAction* eventAction = new MyEventAction(detector);
runManager->SetUserAction(eventAction);

// Initialize G4 kernel
runManager->Initialize();

// Get the pointer to the User Interface manager
G4UImanager* UI = G4UImanager::GetUIpointer();

G4String command = "/control/execute ";
G4String fileName = argv[l];
UI->ApplyCommand(command+fileName) ;

// Job termination

// Free the store: user actions, physics list and detector description are
/7 owned and deleted by the run manager, so they should not
/7 be deleted in the main() program !

delete runManager;

return 0;
L

Detector Simulation

Hit Class

#include "G4VHit.hh"
#include "G4THitsCollection.hh"
#include "G4Allocator.hh"

public:

inline void setCellID(G4int id) { cellID = id; }
inline G4int cellID() const { return cellID ; }
inline void setEdep(G4double de) { edep = de; }
inline void addEdep(G4double de) { edep += de; }
inline G4double getEdep() const { return edep ; }
inline void setTime(G4double t) { time = t; }
inline G4double time() const { return time ; }

class G4AttDef;
class MyHit : public G4VHit {

public:
MyHit(); }:
MyHit(G4int id, G4double e, G4double t); '
~MyHit() = default;
MyHit(const MyHit &right);
const MyHit& operator=(const MyHit &right);
G4int operator=(const MyHit &right) const;

typedef G4THitsCollection<MyHit> MyHitsCollection;
extern G4Allocator<MyHit> MyHitAllocator;

inline void* MyHit::operator new(size t) {
vold *aHit;

inline vold *operator new(size t); aHit = (void *) MyHitAllocator.MallocSingle();
inline void operator delete(void *aHit); return aHit:

void Draw() {} }
void Print() {}

inline void MyHit::operator delete(void *aHit) {

priv§te: MyHitAllocator.FreeSingle((MyHit*) aHit);
G4int cellID ;
. }
G4double edep , time ;

Detector Simulation

Detector Construction

#include "G4VUserDetectorConstruction.hh”

#include "G4RunManager.hh"
#include "G4LogicalVolume.hh"
#include "G4PVPlacement.hh"
#include "G4SystemOfUnits.hh"
#include "G4VPhysicalVolume.hh"
#include "G4LogicalVolume.hh"

class MyDetectorConstruction : public G4VUserDetectorConstruction {
public:

MyDetectorConstruction() {}

~MyDetectorConstruction() override = default;

G4VPhysicalVolume* Construct();

void setSensitive();

private:
G4LogicalVolume *logSens;

-

Detector Simulation

Sensitive Detector

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"

class MyDetectorConstruction;
class G4Step;

class G4HCofThisEvent;

class G4TouchableHistory;

class MySensitiveDetector : public G4VSensitiveDetector {
public:
MySensitiveDetector(MyDetectorConstruction*, G4String);
~MySensitiveDetector();

void Initialize(G4HCofThisEvent*HCE) ;
G4bool ProcessHits(G4Step*aStep, G4TouchableHistory*ROhist);
void EndOfEvent (G4HCofThisEvent*HCE) ;
void clear();
void DrawAll();
void PrintAll():
private:

const MyDetectorConstruction *detector_;
MyHitsCollection *calCollection_;
G4int hcID ;

}i

Detector Simulation

Primary Generator Action

#include "G4VUserPrimaryGeneratorAction.hh"
#include "globals.hh"

#include "G4ParticleGun.hh"

#include "G4ThreeVector.hh"

class G4Event;
class PrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction {
public:

PrimaryGeneratorAction();

virtual ~PrimaryGeneratorAction();

vold GeneratePrimaries(G4Event*);
G4ParticleGun* GetParticleGun() {return particleGun;};

private:
G4ParticleGun* particleGun; //pointer a to G4 class
G4double xVertex, yVertex, zVertex;

};

Detector Simulation

EventAction

#include <iostream>

#include <vector>

#include "TFile.h"

#include "TTree.h"

#include "G4UserEventAction.hh"”
#include "globals.hh"

#include "MyDetectorConstruction.hh"
class MyEventAction : public G4UserEventAction {
public:

MyEventAction(MyDetectorConstruction *det);
virtual ~MyEventAction();

void BeginOfEventAction(const G4Event*);
void EndOfEventAction(const G4Event*);

private:
const MyDetectorConstruction *detCon;

///tree variables
std::vector<int> *cellX, *cellY, *layer;

G4double gunPx, gunPy, gunPz, gunP, gunPt, gunE;
G4double distX, distY, gunX, gunY, gunZ;

TFile *file;
TTree *tree;

Detector Simulatior?

Additional Slides

