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Constrained Fits

In the general formulation of the least square problem, one can introduce a set
of constraint equations which will modify the quality of measured quantities as

well as unmeasured parameters significantly

Look at the general formulation of the Least Square problem

iy variables measured in an experiment
mY measurements of these variables

G the variance matrix

T unmeasured parameters
fi(#m) =01 = 1,---  k aset of k constraint equations

The best estimates of measured and unknown gquantities are obtained by
minimising
,\j") (m,z,\) = (m-— mu)‘L Gar(m —mg) + 2)\ff (x,m)

where A =vector (of k components) of Lagrange multipliers
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Fits with constraint relation

‘2

A = () = 2 [(777- =y I"I?.") Gar + Alfn (J..,n?.)] (A)
2}; = 0= 2\"f;(z,m) (B)
x
‘%‘ =0 = 2f(x.m) constraint equations  (C)
df
where fm - S
()
. o= I
o

In general, the constraint relations are not linear in  x, m
—» use iterative procedure

Start with an initial guess. Calculate values for the (¢ 4 1) th iteration
using the results of the ¥ th iteration

Linearised constraint equation (C) =
frl = 0= fY+ b i (;1:"+1 — ;1:") o bt (m"“‘”1 - m”) (D)
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Fits with constraint relation

Equation (A) gives

(n?.l/-+-1 iJz8 ,rn())f G;\[ - - (Au-}-])f f;:?+1
s (mu+1 B mo)f _ - (/\u+1)’rf;;+1(,,_nl
> m*tom = -Gl (fur) At (A)

Thus (D) becomes

fo+ @t =ab) + fr m® —m¥ = Gy (RN = 0 (|
approximating f**'  with f*

Let R = f"+ fr(m®"-m") (F)
S = -:r,z(;gll( -rlrlz)f (G)
R.S depend on quantities known at iteration ¥ =
fo(z**' =2") + R- S\ = 0
S L 2 e q— [R+ fu( w41 —;I‘U)] (H)

= SR + S fZ (¥ - 2¥)
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Fits with constraint relation

Put this back in (B) =

0 = Af = [ 1R+91fz(z+1_, ]ffz
e Rf(k ) fl ( V1 g )T(fz) ( )ff;’
= (z¥t - ;1:")’f () (S-l)f fr = =RI(5” )’r £
— (f;/)f S—lf; (mu+1 - ;l?") =20 (f:zr/)f S—-IR
> (@1 -2) = -[tse]” gisr 0
RHS of (1) is completely known at the iteration =
Substitute this in (H) = A
m

Substitute A" in (A)

So go from step to step choosmg m, T, A satisfying the constraint
relations and minimising X~ S|mu|taneously
lterations stop when
e constraint relations are balanced at a level better than the required
precision
e derivatives %}n : %‘, are sufficiently close to O
e x”change per iteration is small

>
-
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Fits with constraint relation

’ J u u " —l
Now m“*! z"*! can be expressed explicitly in terms of 0. G g
Approximate to a linear relation

m*t! = g(my);
vt = h(my)
Carry out error propagation

: —

23 G ey f Og
Gt = (')mnG‘” ((')m.(,)
oy OB g TR
Cavar = (')nu)GM ((’)mu)

and correlation between measured and unmeasured quantities

;
g —1 oh
( mo ) GAV (f}m 0 )

Now (A’) = mv+l = ml — G’;,l( ,‘;?)i Avtl
S0 dg O i
‘ B Ga‘] (fm) ‘
el A from (H)
= 1-G@ ()t s ' OR + v d (z*+! - z¥)
M m/) ~ -anu) If)nu, ;
et oo | OR et o= ety OR
= ol GMI (fm)TS ! : B f.r (frfs lf;r) f:fs ]._ from (I)
_dmn dmyp
_ __ =1 v T -1 [ v g vt o—1 pv - vt o—1 pv fr m F
Numerical methods = 1-Gy (fm)'S _f’" f (87 f) 'S ""] 0 ( )



Fits with constraint relation

Similarly O o Bl o W e e

(-)nu) x = xT xT m
Thus the variance becomes

(1;2‘ ¥ = GTII = GKI f::zTS fm(';ll +

[ —_ i/ [ — [ o | [
(’\[ fnjs f.r (f.r TS f.r) f.r tS fm 1
-1 ’ — s -1

Gloe: &= fAS™E)
And the correlation 1

C("?JT)“ 1 — (-' \[ :,I?T Lq_lf_:-l ( _:-IT Lq—lf_:-l)

So the overall correlation matrix hecomes

C;z' 1 C(m.r)" I
f & |
('(m.r)‘ GJ?“ +1

The fit procedure reduces the variance on measured gquantities but
Introduces some correlation among them where none existed initially
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An Application

An experiment wants to measure the mass of one particle which is
produced as a pair in electron-positron collisions and then each of them

decays into a pair of objects

e WET W - W
l I i

= 4]
- qq

Measure the energies of the 4 jets coming from the 4 quarks and their
angles. Jet directions are well measured but the energies are not so well
measured. So try to utilise some of the known phenomena and see if this

can help the measurements
* Energy and momentum are conserved in the particle production and

decay processes
e The two W’s have the same mass
e Since electrons and positrons collide head-on, the initial state

momentum = 0 and initial state energy = 2F Beam
Here all quantities are measured with some precision —. T has no

entries
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Application of Constrained Fit

Choose variables: m = FE;, 6. ¢i, 3
h 3 VE - m for i = 1,++-4
wnere ‘2, = or 1 =
Aol | El
Constraint equations: Y E; —2Ep.qm = 0 1
=1
4
Z;’?,-E,— sinfl;cosgp; = () f2
=1
4
Z_B,—E,r sinf;sing; = 0 f 3
=1
4
Z _&3,‘ E,‘ COS 9;‘ = 0 ‘fi
=1

(E; + E5)? — (E3 + E4)* — (B, E; sin 0y cos 6y + By Ep sin b, cos ¢9)” +

(B3 FE sin 04 cos g + (344 sin 04 cos @4) — (31 F1 sin @4 sin ¢ + 39 E5 sin f5 sin gﬁg)z —
(B3B3 sin 03 sin és + B4 E4 sin 0, sin b4)° — (B1E; cos0; + BoEs cosfs)” +

(B33 cosf3 + 34F4 cos 94) =()

fs
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Application of Constrained Fits

Need to evaluate the derivatives:

. .
r f %
dfr O f 5 2 , 5+,
O F; = OE; = [3;sin#; cos ¢, ;% = [3;sin ), sin ¢;
Of O f | s
90, = ) a0, = [3; E; cos ; cos ¢; (();g 4 —  B.E; cos8;sin ¢,
dfi J fo .- . . 9 l
- — 0 - =t - 131 E’i S 9,1' S 1 ( f:‘ aus e ol
d; | d; | THTEme Oo; Pik; sin b; cos
df dfs o - af.
3, = 0 e T F; sinf; cos ¢, ()f;: — E,sin#, sin ¢,
m m
1 53
:))gl = /3, cosb,
3{;: = —03;E;siné;
df4 . 30
D '
df.
f1 = F,cosb;



Results from the fits

Measurement was done with data using /s = 189 GeV

Entries

MERSHRED
MAsS

51600 T
51400 2
00 é- 1200
e _ 1000
800 - s00 -
600 600 F-
400 - 400 F
200 — 200 F-
0 4;) — 60 T 810 = 100 040 l 60 — 80 = 100
Mgz (Gev) Mq3 (SEV)
After 4C fit After 5C fit
240 =0 My = May

E; = 2Epg,,
Numerical methods Z,, ! Beam



Numerical methoc

Kinematic Fit (Example)

Measurement of three angles of a triangle

B, —010)2  (y—0x)® (65 — s0)?
2= 210) G 220) G 230) + 2 (0 + 05 + 05 — 180°)
01 b 03

1(9/2 9‘5—91'
it :(‘ 'O)+)\:0—>9;:9i0+)\-0?

1 0y?
5 8& = (61 + 6o + 05 — 180°) = 0
N\ 180° — (610 + 029 + O30)

(0f + 03 + 03)
, 1
0; =00+ \-0 =0+ 3 [180° — (610 + O20 + O30)]

For same errors in all three measurements, error on corrected angles are (2/3) x 0.

250F Mean 0.04516 Mean 0.004234 ] [ Mean =0.01677
I RMS 5.893 600 B RMS 2.004 400 - RMS 2.976
X2 /ndf  91.02/107 I X2/ ndf 56.17/43 X* / ndf 58.63/62
200 - Constant 221.5 K Constant 663.7 I Constant 4“7
3 Mean =0.0439%4 i Mean 0.001908 300 - Mean -0.02263
150 Sigma 5.943 400} Sigma 1.993 | Sigma 2.959
100 - I 200
- 200 I
501 \ 100 -
0 ’ 1 [} 1 1 0 i 1 1 1 1 L 0 L L 1
e U] 0 10 20 30 =10 0 0 20 30 =10 0 10 20 30
0_1 (Before fit) 0_2 (Before fit) 0_3 (Before fit)
[ Mean -0.001706 : Mean 0.008617 500 F Mean -0.006911
sl RMS 3.091 ] RMS 1.923 L RMS 2711
X2/ ndf 64.3/64 600 - X2/ ndf 49.93 /41 400 X2/ ndf 59.57/58
i Constant 431.2 I Constant 692.3 Constant 4917
300+ Mean =0.01564 i Mean 0.006992 Mean 0.0007598
I Sigma 3.065 100k Sigma 1.912 300 |- Sigma 2.689
200} I 200l
[ 200 I
100 - l 100 -
0 2 1 i L L 0 I 1 1 L 1 L 0 [ " 1 " L L
=10 0 10 20 30 =10 0 10 20 30 =10 0 10 20 30
0_1 (After Fit) 0_2 (After Fit) 0_3 (After Fit)



Numerical m

Kinematic Fit (Example)

Simple calculation, because the function was linear in the variables. But, in
general kinematic fitting becomes an iterative procedure.

Improvement of Po in the reconstruction of the mass of 7 from two photons

e Measured parameters (y) : Ei, 01, ¢1, Ea, 05 and ¢

e Constraint 2E1Eo (1 — cosfy9) — m?TO = f(y) — m?TO =0, with
cos f15 = sin fy sin By cos(Py — ¢o) + cos by cos by

In matrix notation,

V-l Dy =BT (m2, — f(y) — B - Dy)/o?
(V='+ BT B/o%) - Dy = B" - (m% — f())/0%
Dy = (V' + B B/o%)™" - BT - (m% — f(y))/o%

With an iterative procedure, recalculate parameters, until the change in m, and
\? is lower than a certain value (e.g., 1.e7°).

Error on the fitted mass,

™

%=V |[[-B"-(B-V-B") " B-V]|

Derive this expression



Results from Kinematic Fit

— After fit
—|— Before Fit
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Kinematic Fit (Problem)

Kinematic fit
http: //www.phys.ufl.edu/~avery/fitting.html

Assume the following decay chains of B meson

—0

B — D*g~
D — D'zt
DY 5 K—ntxY

™ — vy

: : : : : : —0
Several kinematic constraints may be applied to improve mass resolution of B,
e.g. and example from B-factory,

1. Mass of vy to M,o (Mass constraint)
the K—7nT7” mass is equal to Mpo

K~ and 7" from D decay intersect single space point (vertex constraint)

B\

Inv mass of D7 is equal to Mp-+

5. Slow 7" from D™ decay and fast 7 from B’ decay come from same space
point

6. Energies of final state particles is the energy of beam (in CM frame)



