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Classical Mechanics around 1900

e Thinking in the West:
e |f a problem has a solution, we know how to find it
e Other systems have no solution
e Reasonable physicists should move on to other problems

e Thinking in the Soviet Union
* Most systems have no analytic solution
e Those systems should have interesting properties of a different kind
e They are clearly candidates for randomness
 We need a way to define different degrees of randomness

e Start using ideas of statistics and Monte Carlo techniques in the field of
physics
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Probability

* In many experiments, even when the conditions are kept the same, repeated
measurements can yield different results

The results of individual measurements are unpredictable — possible results of
a series of measurements can have a well-defined distribution

e events must be completely uncorrelated (statistical independence)

e The number of trials needs to be large (law of large numbers)
N; = number of events observed in class i out of a total of N

= Pi = probabilitv of aetting an event in class i
—_ lill'l;\.'_.x; (_.‘Vl / .‘\r)

e for a continuously varying variable
N f(z:) Azi = number of events observed in the interval between %i and *i + Ax;
for values of T out of a total of N events
element of probability: dp = f(z)dx
f(x) = probability density tunction
within the permissible range ~ [7"*" f(z) dz = 1

Il ou
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Examples of Probability

e Throwing a dice: oo
the probability that one scores a value nis 1/6 ®
for a large number N throws n appears ~N'6 N

* Emission of scintillation light: L= , >

scintillation photons are emitted isotropically
within a tube having all sides blackened except a small opening of solid
angle 4@ — d}/(4wx) emitted photons will escape

e More common in a physics experiment = determine some parameter from
a set of measurements:

. 1 .
flcosf) = §(l+a'(:()sﬂ)

experiment measures a — o = Aa Crudely
e the probability that the true value of a has been in the range o* — Aa

to o* + Aa is 68.3% (inverse probability)
e the probability that the true value of a lies between a* — Aa and o* + Aa
isOor (direct probability)
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Likelihood Ratio

Suppose we are making a measurement of a variable  to justify if the
hypothesis A or B is true

o if A is true, the experimental distribution of the variable & must follow fa(x)
o If B is true, the distribution must be fg(x)
The experiment provides N events with measurements *1.T2,--- Ty

If A istrue, the joint Drobabi,lvitv of getting these results:

dpy = H falz;)dx;
the likelihood ratio: =
o HN falxy)

=1 fg(xi)
IS the probability that the particular experimental result with N events turns
out the way it did assuming A is true divided by the probability that the
experiment turns out the way it did assuming B is true. (Betting odds of A
VErsus B )
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Use of Likelihood Ratio

* An experimenter in planning a new experiment must estimate a priori the
number of measurements needed to prove a certain hypothesis

use the average logarithm of the likelihood ratio which is better behaved
mathematically than the average ratio

logR = N /log{,——h( )dx with 4 = .TRUE.
B

= =N /l()g ;—fg( )dx with B = .TRUE.
B

e.g. study of K? spin from its decay to #+x~

hypothesis A: if K has spin 0, the energy distribution of #* in the laboratory
frame will be flat = fa(z) =1

hypothesis B: if K has spin 1, the energy distribution will follow = fs(z) = 2z

kinetic energy of ="

a: = . . .
maximum value of kinetic energy

An experiment is to be designed to establish spin 0 of K with odds of 10* to 1
= log 10 = N ful log 5= -1-de = — N fol log(2z)dx
= N = 30
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Use of Likelihood Ratio

on average 30 events will be required
however, if 1 event is found with «* = (0, this would make R — ~

= one such event would be a proof of spin 0 of K7}

Fluctuation of log R for a given N =

(e R = m)i sy [/ (l()g %)~ fa(z)dx — (/ (l()g %) fa (;7.')(]3:)“]
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Maximum Likelihood Method

e Consider the estimation of the value of a parameter which is a continuous
variable

then the number of hypotheses to be tested is infinite rather than a discrete
set

= use the same basic principle which says that the probability of any two
different values of the parameter is the ratio of probabilities of getting a
particular experimental result assuming the first parameter value and then
the other value

f(a,z) = truly normalised distribution function
a = parameter; = = measurement; with [ f(a.x) dx = 1

N
Then the likelihood function £L(a) = []f(a.x;)
1 =1

IS the joint probability distribution function of getting a particular set of
experimental results T1,T2," - Ty

Relative probability of @ can be obtained from the distribution of £(a) vs @
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Maximum Likelihood Method

a” =the most probable value of (maximum likelihood solution)
Aa =the RMS spread of a ibout a*

(conventional measure of accuracy in the determinationof a — a*
1

- j('n—n")zﬁ('n')da 2 /
[ | L(a)da n
|
K» |
@ |
| |
|
} l
| a'*
, - o
3 : ~a
For N — oo, a” approaches the true value of a — ay
To determine m parameters ai, a2, -+ a;m determine L{ay, --- a,,) and
solve m simultaneous equations:
MW | .
(‘.— |Gz = i) (W =InL(a1, -+ am)]
da, . | |
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Gaussian Distributions

e |[f the number of measurements is indefinitely increased, the width of the
distribution of the measured parameter steadily decreases and the
histogram approaches a smooth curve given by a distribution function
known as Gaussian distribution I

® Fhy y
¥ m_mt_f#m

¢
Ee
&
1 i
fla,z) = o exp[ —(z — a)° /(20‘ ]
£ — measurement * 100 ‘ ,6‘7"” “'m lf}é ‘;
o = uncertainty in the measurement =slom
006 ~0.04 —0.03 ~0.08 =001 ml N BT 1

for a set of measurements T W|th the corresponding uncertainties @i, the

likelihood function
H\/_ exp [—(;1:,; —a)"/(‘Zm“)]
,\f
1 - I; —a 2
Then W = =3 (2 '0.20) + constant
Thus OW i
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Gaussian Distributions

. AW . .
So the solution of ‘-()7 la—a+ = 0 iS given by

1
st = Y =S|/ Zo,-? (weighted mean)

0:’.2 :

L -

b z' o —

when all measurement errors are the same

a* = %;Z;r,

2
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Maximum Likelihood Error

For large N, L(a) approaches a Gaussian distribution:

h 5
L{a) ~ exp [—;2-((1. - a")“‘
with 1/vh as the RMS spread of @ around @
W = —g(a ~a*)® + constant
oW :
7 el ~h(a — a")
PW
5z — P 1
wn el ol SR WeN A
Thus Aa = & = (-3¥)
If f(a,z) follows a Gaussian distribution
oW T; — @
E - zl: O’i.2
-3
= Ac yie]
§ g — _
—~ 0;°
a9 W

if L(a) is truly Gaussian, %-3 is the same for all values of a,
otherwise it is better to use uic average 2*W

Jda<

Numerical methods



Maximum Likelihood Error

w [ (%) L(a)da
da2 | L{a)da

it is important at the time of designing an experiment to estimate the
number of events required to measure a parameter with a given accuracy

L4

= Determine 24
events

averaged over many experiments each with NV

Ja=<

For 1 event,

0~ W 91
(‘- LA /( nffd;w:

a

For N events

W [ PInf
— = N / fdx

a2

where the parameter is extracted from the distribution f(a,x)
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Maximum Likelihood Error

olof = 2 (208) = 1 (8} 4.1&1
da? — Oa \ f Oa o f da f o
g 9 In ff(h _ d () f(h
: da? ()n ()n-
B af )?
B da da?

| fdz = 1 = the second term drops out
92W o PSRN oy
(')(12 — N / ? (%) dx
o o [iieey =
=> A = TN [/f (()a) (1.1]

Let us consider the decay it — ever, and study the energy distribution
of the decay electron

fla,z) = 3(1 + ax)

need to determine @ with an accuracy of 1% for @y = — 3
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Maximum Likelihood Error

af T
da 2
9
Thus +11 faf\" dop - — l +1 ridxr
-1 T(%‘[) f 1 14ar 2(1 [lnl — _20]
S0 Aa = ﬁ 111 —2(1
g B 1 2a
and a  vN\In e — 24
1% accuracy =p ,
r 4 20.
N = 10 .
lll 1_ for Qo =— =— 3
~ 2.5x 10°
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Maximum Likelihood Error

An experiment with N events —» measures M parameters ay,as,:---ay;

The earlier formula Aa: = ( —u‘r) " is applicable when the parameters

da*

are uncorrelated, i.e., (o, —af)(a; —a}) = 0 forall 4, j with L # J

For the general case, use Taylor’s expansion:
M

7 T % oW , 1 QA 7
W ((.I.-) = H(U ) + Z 87 a? 3; — 5 Z Z H,’jﬂi‘i}j = s
i & i j
H,’, = da; — (’1.-:
92W
Hij = |2+ ,a;+

a 8(1,.,-, 8(1,]-
For W(a) = InL(a) , the most probable value a* corresponds to

oW 55
da @™ 0

r( ok 1 5
=1nL(a) = W(a*) - 522 H;;B:8; + ---
2 J

Neglecting higher order terms.

1 5
[:((I..) = G- exp | — 5 Z: Z): H,’,jﬁi_ﬁj
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Maximum Likelihood Error

This gives rise to a M dimensional Gaussian surface.

The formula for the uncertainty depends on the approximation that

*

L(a) is Gaussian-like in the region a; = a;
H |s a symmetric matrix

Let U = unitary matrix which diagonalises H
UHU ! = nh

with h = diagonal matrix
Let 8 = (B1,..0u) and ¥ = BU™

Then the element of probability in 3 —space

1

d"P = Cexp —§(A,U )H(yU) | dM 3
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Maximum Likelihood Error

The Jacobian relating the volume space d"3 and d~ is U] = 1

| 1 ,
d°P = Cexp [—5 Z hiy; ] d%q

M -dimensional Gaussian surface — product of M independent one-
dimensional Gaussians

YaTb = (50,()}1;1—_ l
BiB; = Z“fa“sza Us,
a.b
5 R |
o ZUi.a. ha Ua.}
-1
= (U"hU),,
L]
Thus (a; — a}) (a; =a.;-) = H Y5 with Hy; = — ()T(‘,‘a

Averaging over repeated measurements

= _ 125\ (2L 4
H ] = wi¥ / f (a(],i) ( 8(1}) dax
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Error Estimation

Measure the range of mono-energetic particles:

Let it follow Gaussian distribution with mean range a; and straggling

coefficient a2 N. o e R
Llay,az) = H exp [—(l" .(,h) ]
1 V2mag 2a3
1 T3 — Q : N ;
B ol = SN i = 5 In(2r)

oW (z; — a,)
da; Z a:;

oW 1 . N
— —3 Z(ﬂf,‘ - (l])- e ey

Jao a;

The maximum likelihood solution is obtained using (;L‘) =0

1 1
* 73 -
“U = N Z Li

i

N \/Zi(a)i — (1,*)2
(1.2 .\"
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Error Estimation

The matrix H is obtained by evaluating

a 2 ‘I’ o .L'\r )
da?> a3’
= — T; —a :
da3 al Z( 11)” + a2
W 2 ( )
= —— T; —a .
da0as as ’, :
a\‘i 0 . a_
Thus H = n 2N = H = ° +
0 3 0 1l
a3 IN
This leads to Aay = 92 :
vV IN
*
A(I.Q = 2 =
2 N

These are errors on error and correlation between @1, G2 s zero
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Error Propagation

Let a single physical quantity ¥ be a function of j; parameters:
Yy = y(a‘la £ '(1,-..\,-1)

The best estimate of ¥ is

—
=
I
<
*
e
b
|

0‘/ 8J : - - *
ZZ da; ()(JJ((]" — aj)(a; — a.j)

Ay 0J
Ayn..\f A \/ Z Z 0(1 0(1 j
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Error Propagation

In general N physical parameters Y1, ‘- Y~ are known functions of M
parameters ai, --- ayr whose error matrix is known

— Ay, ()z/m -1y
Yy — 1y M1 1
(=40 )(Ym = ¥ Z Z da, ()m )

If %5;—' constitutes the derivative matrix D , then
(H')"' = DH'D!

This is the basic principle of error propagation
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Systematic Uncertainties

A variety of processes cause systematic effects in a measurement.
For example, nuclear or high-energy physics experiments study
scatterings of particles or nuclei and measure the probability of
interaction. In these measurements, there could be effects due to

e background

e selection bias

e detector acceptance

e detector inefficiency

e resolution in the measurement
e dead time

In principle one can determine the systematic uncertainty by intrndiicing it
in the overall likelihood function through additional parameters =>
likelihood solution will determine systematic uncertainty

Let us go back to the example of a beam of particles with mean range a1

and straggling constant @2 . Let there be an unknown background particle
with uniform range distribution be present
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Systematic Uncertainties

So the probability density function

1 (x — (1.1)2]
a, as, r) = exp |—

IS modified to

w pua 4 : (z — a,)?

fla1,:02,G3,' ) = C ((I’; + \/_02 exp [— 2 a2 ])

LMar

with C = / f(x) dx
LA in

The solution a3 s related to the percentage of the background.
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Confidence Interval

The probability that the parameter value a lies between @’ and a’/ =
Confidence Level

r’

/ " aa; (i ( (.'1.4) da
Hesesa) T [[x L(a)da MG)

r.L', a’ o' q
This depends on the arbitrariness of the choice of the parameter. For
example, consider the area under the tall
¥ L(a) da
Pla > a') Jr K6)da

/ _xx L(a) da
Now choose a physical parameter /\ Ma) with X' = A(a"
, ) dA
P\ > \N) = 3 £Q) «
| f ﬁ ) dA
_ f)\' (»‘ Soda
- f_,x E (1)\

Numerical methods = Pla = (.’1.')



Confidence Interval

The numerical value of the confidence interval depends on the choice of
the physical parameter

Only the maximum likelihood solution and relative probabilities are
unaffected by the choice of the parameter ¢
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Bartlett S Function

This function is defined to avoid the arbitrariness of the confidence
Interval.

Define a function S(a) with a mean of 0 and a standard deviation of 1
This is independent of the choice of @ :

1 oW
S(a) = s
AM ar (d,)‘z “*
2 i :
' = ) da
with C /a..\,,,, 902 L(a) da
If £L(a)is Gaussian with a mean a* and standard deviation Aa
a—a”
() Aa

68.3% confidence interval in @ can be obtained by solving for a in
S@') = +4+1 and S(') = -1

95% (2 standard deviations) interval in @ is obtained by solving
Sla) = £ 2
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Bartlett S Function

The mean: - 1 [OW
S = F W £ ((I..) da
B JL(a)
B (' da %9
= L(amaz) — L(amin) = 0
- 1_J i . foEN?
The mean squared: §2 = o2 / Vi ( aa,) L(a)da

z 2
[1(252) da
— [ & ($9=) Lda

L Oa

[ (%9) da

—[Z%5da + [1 (‘.)—C)Qda

da? da
N o 02£] aﬁl 0£|
OW 5.5 dad - O 1arMar g, |@QAfin .
ans.. 002 o 0% Qgs

= 2 = 1

Numerical methods
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Binomial Distribution

Events belong to one of the two possible classes

If P is the probability that an event belongs to class 1, then the probability
of observing N; out of N events in class 1:

. g l\r! AT N—N
P(A"la -‘N) = 4'\'?1! (4,\.’ o Arl)!p.\l (1 = p).\ A

For a given experimental result of the above type, the Likelihood function
N!

L) = Niovo Nl)!p"‘" (1-p)
W = Npylnp + (N— Np)In(l —p) 4+ constant

ow N N - N,

ap  p  1-p
M= Ngp
= P - p)

’Fw N N - N

opr  p2 (1-p)?
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Binomial Distribution

.)* - .LNI
— Pro=""N
1
(p BE p*)z = N N—N
e T )"
B 1
P 8 N N
pr T T
_ p(-p)
=
p* (li—p)
ap =

There is a measurement of the count of electrons in the decay of muon in

the forward hemisphere: (Remember. f(a,z) = (1 + ax) )

p = 01 ltatgy — 2 +a
* N
Observing frequency: Pt =5 i
ot = 4p* — 2 = 4‘\,‘ =D
N
é 4 *2
XNa = AXp= N(l—a )
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Poisson Distribution

x/A = probability of having an event at a distance &
= Probability having 0 event in a length
lx
dP(0, z) = -—P(0, :1:)%

P(0, z) = exp(—z )
since P(0,0) =1

P(N, z) = probability of having N events in length *

N

r l.’fi
dVP(N, z) = H (%) exp(—z /A)
=1
/AN
P(N,z) = (1/"\"') exp(—z /)
T ' 4,’\:'(:1: / A)"\r i ¢ i
N = é:l N exp(—z /\) = X
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Poisson Distribution

The Likelihood function:

r B a’™N
(a) = N exp(—a)
W = NInha — a 4+ constant
oW B N 1
Da  a
a 2 I‘v . i .L'\r
da2 a?
which leads to 8 . B
a:
Ag =
VN
while
_  [al{a)da _ [a™*'exp(—a)da (N +1)!
@ = TZla)da TaN exp(—a)da N
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Extended Maximum Likelihood

In the standard likelihood formalism, the distribution functions are always
normalised to unity

This requirement is strictly not necessary — one needs to use the correct

probability of getting experimental distribution
—> Estimate the absolute normalisation

F(x)dr = Probability of getting an event within an interval dx

=y Ihe average number of events in the experiment when it is repeated

many times B At ax
N(a) = / Flx)dx
VIMin

Probability of getting no events in an interval Ax
exp (— f:ﬂh F(x) d.r)

Probability of getting no events in the entire interval Tafin < T < Tifax

TAMax
exp (—— / F(x) (Lr) = exp(—N)
VIMin
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Extended Maximum Likelihood

The element of probability for a particular experimental result of N
eventsat & = Fi. - IN IS
AP = exp(—N)H F(x;) dx;
i=1

N
= L{a) = exp(—N(a)) HF (@, ;)
=]

N IMax
W(a) = Z In Fla,z;) — / Fla,r)dx
i=1 VIMin

The solutions @; = a! are still given by M -simultaneous equations
oW
; a.=a* = 0
(’)a,,-l ST
where the erroris  (a: — af)(a; —aj) = (H'),_
' EEPTTRIRN . 1o
with Hi; = da;da,

N does not appear explicitly in the formula

W / 1 9F OF
e . - - . (a.r
(.)(I,'(.)(I.J' . F (.)ll»,' (.)(I.j

Numerical methods



Maximum Likelihood Method

Maximum Likelihood

Likelihood function : N independent observables z1, xs,....x,, from a thec
retical distribution f(x; ), where 6 is the parameter to be estimated.

Likelihood is defined as L(0;x) = f(x1;0)f(x9;6)....f(x1;6), where 6 can b
found by solving the equation, % = 0.
In general use 2% = ( and variance, o*(0) = [(0 — 0)2L(0; x)dz1dws...dz,.

But, very difficult to get analytic solution, thus uses an approximate method i
the limit of the large numbers,

_ O2InL\ ! O2nL _
200) = [ — , U. = — 20) = (U™Y..
o ( ) ( 092 ) *:> L] (90,(961 — 0 ( 1.) ( )u.

Maximum Likelihood method

e Angular distribution, y = -2 = N(1 + bcos>6)

dcosf

e Normalised y behaves as a probability distribution

e Normalisation factor, N = 5 is coming from f_ll y dcosf =1

L
1+5/3)

e Normalisation is essential because its dependence on parameter b, factc
1/2 is not crucial, just a scale, but need for error estimation

e For the ith event, y; = N(1+bcos?6;) is the probability density for observin
that event, e.g., #; for a given value b.

e Define likelihood, £ as the product of y; for all events or called as joir
probability function, £(b;0) = []v:, which is the probability of observin
given set of 6, for that b.

e For true (theory) value of b, L£(b;6) is maximum, or inversely maximize ,
as a function of b to find the best value of b.

e Without normalising factor, N, one can make y; larger simply by increasin
b, hence £ would not have any absolute maximum

e Similarly for lifetime fit to t1, to, ....t,, 7 = > _.t;/n, if one misses 1/7 in the
expression of probability P(t¢/7) = (1/7)exp(—t/T), probability will larger
for any larger value of 7.

Likelihood £ vs probability distribution function (pdf)

/4

p Fixed T L
L Fixed t

e Poisson :

v

pdf for observing n, given X is P(n; \) = e *\"/n!
From this construction £ as £(\;n) = II; e *\" /n;!

Use same function for A and n, but

for pdf, \is fixed : P(n;\) exists only at integer n > 0

for likelihood, n is fixed : £(\;n) exists as continuous function of A > 0

e Lifetime distribution :

P(t;7) = (1/7)e”"/" is maximum at t = 0
L(t:t) =1I; (1/7)e7%/7 is maximum at 7 =< t >
Both ¢ and 7 are continuous

(z—)2

e Gaussian : Same functional form (1/( 271'0'))6_%_02_

If only consider Gaussian, one can confused between pdf and £

Integration of pdf = 1, whereas integration of £ is meaningless

Transformation properties of £ and probability densities :

Example of lifetime :

dn/dt = e~



Multi-Parameter Fit

I — Smaller I
P Vary M,
~N e
> >
change observable from t to y, where y=v/t Larger I
codn/dt = dn/dt.dt/dy = e 2y
| T il lami;
1. pdf changes, but M— M—

2 ff (dn/dt)dt = fo (dn/dy)dy L(My(T);m;) = [, vi(My(I')) for fixed I'(Mj), one parameter function, when

3. Maximum probability density, Not very sensitive we know second one.

i icoritrast £ which is ot a:pdF for A Properties of likelihood function

When parameter change from A to 7 = 1/,

T
—
1. £ does not change, pdf changes, dn/dt = (1/7)e"/"
L(T;t) = L(A = 1/7;t), because identical number occur in evaluation of
two L's, but
2. [N Lnt)dN £ [Y™ L(r;t)dt
3. It is not meaningful to integrate L.
Pe8p P,  Po*dp
Likelihood function for multi-parameter fit : : p—
A case of Breit-Wigner function, where two free parameters in the function (M
and T") probability density function is ! ; .
L(My,T;m; Hyl (M, T), where y;(M,,T') = L ‘ d
' A o i — Mo)? + (T/2)? 1
The maximum L give the best value of M, and T'.

[ 1, i is a very small number for a large number of measurements(N), difficult to
calculate.



Numerical m

Error Estimation

Conventional to consider ¢ = In(L) = ). v
For large N, likelihood function, £ tends to Gaussian, atleast near the vicinity of
maximum,

1 0%

0= laze + ———(0p)* + ... = lrpaw — —(0p)2 + ...,
'*'+2!3p2(p) + z 20( p)"+ ...,
.2€ 9
where —lza—:L:eszo)—
c  Op?

Calculation of p (probable value) is very simple, but what is its error ?

e RMS deviation of the £ distribution about its mean
° (—826’/8;)2)”1/2

e The change in p required to reduce ¢ from its maximum value by 1/2, i.e.,
((po £ Op) = €(py) — 1/2. Error can be different in +ve and —ve side.

e For non Gaussian £, use second or third option

e Try to avoid non-Gaussian situation, e.g., use decay rate (1/7), rather than
lifetime, 7 or use 1/p rather than momentum, p of charge track

Error in maximum likelihood fit



Eyrror Estimation

e For single parameter fit, parameter p is estimated from eqn 0¢/0p = 0 and
error, o = (—0°/0p*)~1/?

e For multivariate p;, their best value is obtained from the set of equation

e For error, define H;; = (—9*(/dp;Op;) and obtained error matrix as E;; =
(H™1)ij
An example : Two variables = and y. Contours of ¢ are ¢ = —(4x? + y?), where

lrmaz at (0,0) and £ = /,,,, — 1/2 when 822 + 2y = 1.

Errors on variables, + = 4+./1/8 ( when y=0)
y = ++4/1/2 ( when x=0)

Numerical methods



Pros and Cons of Likelihood Method

In terms of H;;,

0% 8 0) . 1 (20
_3:1:.178% N (0 2) o 16 (0 8)

Rotate axes clockwise by 30°

o 113 3v3) .1 [ 7 =33
(3\/3 7) el 5 (—3\/5 13 )

Mean and error in Gaussian function through Likelihood function

Measurement of same variable with different error

1 (xi — ) (i — p)?
L= ——), {=InL = —lno; —_ t
U o exp( 202 ), n Z na_—!—z 207 +cons

3

N
Q.J =

._QNIP—‘ e "_'

ol T — [ B i o7
o T

1 2

%0 1 5 1 o?
i S Al Ohl St

More weight on the measurement with less uncertainty.

i

What is the average value of count rate 1 + 1 and 100 4 10 ?
Calculation 2 + 1, but simple guess 50.5 4+ 5 7

Assumed true value of o;, which are similar in these two measurements and
expected same rate.

Don’t blindly average the experimental data.

Pros & cons of Likelihood method

e No need of histogramming. Most useful for low statistics.
e Unique answer and error (e.g.,A\o=0\ or 7p£d7, then \g£d = 1/(10F07)).
e Able to constrain parameters and ranges.

e But, difficult to tackle background,
¢ =73 In(frwr(m;) Pr(0;) + fpwp(m;)Pp(0;)).

e Use weight factor (e.g., efficiency, ¢ = 1/w) for different events,
¢ = > .w;In(y;), but difficult to estimate error, better option is ¢ =
Y In(N y;€),

y; €; = distribution with efficiency, N is the normalisation factor with ¢
77?7?77

e Large computing time, normalisation for each parameter set separately.

e How good the fit is 7 No limit on the value of £. Hypothesis testing is
not easy, but can compare two hypotheses. (¢, — ¢}) can just give better
choices of models.

Relation between likelihood and y? fit

For a measurement of x; + 01,29 £+ 09, ....., x,, = 0, of an underlying theory of
expected value, p,

1 (zi — N)2 (x; — u)Q
L = H \/%O-i eﬂi‘p(—T‘?), { =InL = Z: —lna‘.i—}—zi _T‘-%_'—CO”St

N2
—20 = =2InLl = Z M + const
- o;

Maximisation of 2¢ is same as minimisation of

2
2 (i —p)
oyt



An Example

Let there be a sample which contains two radioactive species:
@y, a» lifetime of the two species
(y, (4 the initial decay rates of each of the species
£ denotes the time

The probability density function is then

| ‘ T -
Fla;, ) = 3 exp (— — ) + a4 exp (— e )
) -

Numerical methods



Solution to the Problem

Standard Method:

To determine q; s, use the normalised probability distribution function

oxp(—:—“) + as (—QL‘)

) + a5a2

fla;, x)
with G == =

a3y, @4 would be determined using the auxiliary equation

/ : Fdzx = N
Jo

= N(a;) =N

Extended maximum likelihood method:
1.+ -4 are determined directly from

N(a;) neednotbe N

Numerical methods



The Least Square Method

Let P measurements at points ¥1. "-* p |lead to the experimental
results (y1 = o1),--- (yp £ 0p)

e.g. Each experiment consists of event counting
(measurement ? with N; events)

Then ¥ = N; and are Poisson distributed with @i = v'N:
H [q(.r )] exp (= x;))
Z Nilnylx;) — Zu(.r,-) + constant
- Y (@iX)

j(a;.x) denotes the curve fitted 3”
through the experimental points i

Numerical methods



The Least Square Method

The best fit corresponds to @: = @} coming from AM -simultaneous
equations:

P P r o -
Z ()J , - Z A_; ()y(.lj)
()n ; e~ ylx;) da;

If ¥: ’s are Gaussian distributed with standard deviations @;

i=1 J i
1 - —
W = —sM - ) Iny2ng;
i=1
P —7 . \12
with  m = Y ¥z
i=1 %i

Solutions a: = a} can be obtained by minimising M or maximising W
using
M _
a; = U

Numerical methods



The Least Square Method

Let M* =minimum value of M (least square sum)
Values of @i which minimise M = the least square solution
Here, the least square and maximum likelihood solutions are identical.

Least square errors:

((I,'—ar‘-')(aj—a;) = (H"l)‘,j with H;; = 1 M

2 daida,

Numerical methods



Example of Least Squared Method

Yy =linearin €

M
yla;, x) = Z"’i fi(z)
i=1
AN Y ZA (IAf;.(J ) |
Then ((7 = _)Z[ 0.1 J ]f‘-(_-rj)
: j
fa‘ (zx) filzx)
and H; = Z_: 0;:,1
P \
Let o = Yi [ f;fﬁk)
"
Then OM: ... o ““i“ .
(.)(l,' z - - kEL ki
In matrix notation; ¢r _ g = o
a’ = ('H-‘
5 Yk fj (Jl.)
« 55 HY),
j=1 k=1

Numerical methods



Let the curve be a parabola

Then

Numerical methods

Example of Least Squared Method

Yy = a +a2x + ag x?
1
Hy, —
k Ok
I')
Hy» —5
kO
72
Hao y —*
k. Tk
72
Hys y =&
e
3
T
k
Hay E —5
k. Tk
4
T
k
Hyy E —5
k. Tk

X Y
—0.6 5+2
—0.2 3+1

0.2 5+1

0.6 8+2

== Get @1, a2, a3



The Least Square Method

It is customary to denote 3y as an improved set of estimate over the
measured values of ¥

Yyi = ¥i + ¢

The least squared sum is
M=y=C'HC

with H~! = the error matrix

In the definition, one assumes independent variables, i.e., H~' has no
non-zero off-diagonal terms

We can start with correlated variables ¥ and then transform them to
independent variables t using a set of linear transformation

t = Ay  such that

AH;'A' = H{' isdiagonal

Numerical methods



The Least Square Method

If H;'is non-singular, there must exist A~ such that
AL HE (AT =l
In t -space, one can always get solutions from

M=yx?* = C!HC

and transform them back to ¥ -space

clH,C. = (Ac,)' H,(AC,)
= CjAtmAC,
= ClH,C,

Numerical methods



Chi-Square Fit

N M

V
>

Data set {x;,y; £+ dy;} and theory y=a+bx

Does it fit in a straight line ? (Hypothesis testing)

What is gradient and intercept ? (parameter determination)

b h 2
9 _ Z (v?™ — yi"(a;))
X = 2
i 2
e 0; suppose to be error on theory, but in reality it is the error on experimental

observation.

— Simpler : o; is free of o

— Different weight on individual point, ..

e If theory and data are consistent with each other, v/ ~ v, y? is small
e Bin size
e Poisson error, ideally +ve and —ve errors are different

Numerical methods



Numerical i

Chi-Square Fit

— Not too small, which has a larger error. Also for low statistics Pois-
son error is different from Gaussian (Interpretation of error interms of
Gaussian function).

— Not too large, above detector resolution, peak will not be visible.

— All bins need not have the same size, but preferable.
e Minimize y? to obtain the best line (best parameter of the theory)
1d/2 _1/2
e The error on parameter (5(#)
or increase x? by one from its minima, \2 .
e For multi parameters, their best values are obtained from equations,

/2 \ R . . . l (’)2\/2
Ox~°/0p; = 0 and error matrix is the inverse of (Qap.,»apj

9 _ (yobs_.yth)‘z

e For single measurement, 4 + o, y p

e Minimises to y2 = 0 for y** = ¢! and x> =1 for y*** = y'" + &

e For two measurements, y; and y- of single quantity with equal error

th)? th)?

2 Wi—y)" ey

o2 o2

X

y"h = (y1 + y2)/2 from dx?*/dy™ = 0 and its error = o/v/2 from \? =
X2 + 1, exactly what we expect, error = o /\/n
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Some Examples

Simple example of minimising y*

x*
*
1
7 * *
*
*
%
Smin-'-1 '""""""""“—._: """ i
Smil’l ..................... *. .-"J-*-" -
P, p—
Measurements, py =01, p2 £ 09, ........... pn + 0,. The best value p £ o
_ (pi — p)? .
Construct y Z 5 and minimise y~ wrt p
o




Some Examples

Example of straight line fit

Y —

X —

A simple example y=a+bx; simple because y is linear in a and b, not in x.

Data consists of n points (z;,y; & 0;)
Lots of lines for different 2. Minimise y? wrt a and b.

2 (yi —a —ba;)*.
X :E: 2 ’

g;

i

ldy* (yi —a — bx;) ldy* (y; —a — bx;)x;
i D B D

Simultaneous two equations for two unknown a and b. Solution of these equations

It RN ey
b= el e =R 2

Weighted mean < f >= [f]/[1] and a can be determined from < y >=<a >
Numerical methods +b <>




Numerical meth

Error Estimation

Error on straight line fit

1
>

X - X -

To evaluate error, one needs an error matrix, a and b are correlated. First evaluate

2 0piOp;j
107y

2 9a?

—nll; 2N

So, inverse error matrix n ([1] M)
[2] [27]

and error matrix - (2% —[a]
: e (—m m)

Where determinant, D = [2?][1] — [«][x] and for no correlation o?(a) = 1/[1]
and o2(b) = 1/[27]

Errors depend only on the measured variable z;, o;, but not on how well the data
agrees with the theory.

cov(a,b) = — < x >. Better to use 2’/ (= x — < x >), because errors on d
and b are uncorrelated.



Numerical methods

\ .

Error Estimation

——

e How well is the y-coordinate of the fitted line known for a particular x-value
?

Variance of y, 05 = 0, + 2 cov(a,b) + 2?02,
For proper shift in @ such that < 2 >=0, o0, = 0, + 2°0;

e Hypothesis testing : How well the data points matched with the theoretical
expectation ? Probability of getting as large as this in a \? distribution

(x*/ndf) ,
2 Y; Z Yi Z LilYi
/ - p— —— ) — — b ——
Xmin : O,é? a i 0.12 i 0-12

e Error on first kind : Reject H when it is true, should happen 2% of time

e Error on second kind : Accept H when something else is true

e Optimise y? criteria for the best result



Numer

Minimisation Procedure

Minimisation procedure

Due to complex expression of likelihood /y*-function, there is no analytical solu-
tion of many experimental data points. There are mainly two different kinds of

approaches to look at this problem numerically, e.g.,
1. Grid/Random Search and
2. Gradient search

Grid Search :

Grid : Evaluate F'(x) at zg, xo+Az, z9+2Ax, ..... and look for minimum F'(z).
Only suitable for finite range of search and smaller dimension.

Random Search : Instead of equally spaced points, generate points according
to some function; better for a large range of parameter space and larger
dimensions.

But, may not get any true minima.



Numerical mett

Minimisation Procedure

Coordinate variation method or single parameter or one-by-one variation
method. Vary one parameter and get minima, then next one ...
Need large number of steps,
In case of strongly correlated variables, this is unacceptably slow.

SN SN

N
7~

X X

Rosenburg method : Single parameter method but get the best direction
after the first steps of each dimension.
Efficiency decreases with the number of variables.

%\,/\

..............

V



Numerical methods

Minimisation Method

Simplex method (default in Minuit): Take n+1 points

F(Ph) - mar(F(pl), F(PQ)* )

F(Po) = min(F(p1), F(P), ...)

New line through P, and P4 = % (Z_’;:ll pi — Ph)

Three operations can be used, reflection, contraction and expansion.
Reflecting P, about Py, P* = (1+«)P4— aP,, where « is a +ve constant

1. if F(P*) < F(B,), has produces a new minima and see next step
P* = ~P* 4+ (1 — )P4, where expansion co-efficient, v >1
if F(P*) < F(P,), replace P, by P** and restart
if F(P*)> F(P,), replace P, by P* and restart

(
2. if F(P,) < F(P*) < F(F,), P, = P* and restart
(

3. if F(P*) > F(P,), reflection is failed, P* is unacceptable
New point P** between F}, and P4, such that
P* =8P, +(1—-08)P4,0< <1
if (P < F(P,),P,=P*
if F(P**) > F(P,)&F(P*), failed, all P; are replaced by 1(P; + P,)
and restart whole process.

«, 3,7 are free parameters, minimisation depends on those, recommended
values are 1, 0.5 and 2 respectively
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Minimisation Method

Gradient method : predict new points relatively far from the last
point

Steepest descent method : From F, seek a minimum of parameter space,
where function decreases most rapidly.

f-i _ Oz;
‘ [Z,?_l <%)2] 1/2

1,7 =12,...n
In 2D, it is same as 'one-by-one variation method’, but with a rotation of
co-ordinate axis.

~/
o

Very slow due to complete interdependency in F' and choice of the starting
point far from true value.



Minimisation Method

Newton’s method : Second degree of taylor expansion

oF 10°F
F(x) — F(”IZ'()) + %Ll‘o(x — a?o) _'_ 5% ;170(37 — 2170)2 +
1
F(z) ~ F(zo)+g' (v —xo) + 5(55 — 0)" G(x — @)
OF O*F

Approximate a function around x, by a quadratic surface. Calculate the
minimum of the n dimensional parabola analytically

_ —1
Lmin — Lo — G g

ox* | x> d Iy? |
aga(’yl, ....’yb) = aaa(ﬂl, 3(,) + Jar. aaa(ﬂl, Bb) X ('Yc — BC)

Left hand side is zero by definition, where ~; are true value and corrections
are (0 =, — B.) = -G g

e |s not a true minimum, but forming a new parabolic surface about X,,,;,,
and calculating its minimum.

o |t requires G everywhere +ve definite, when it is negative, artificially
altered

e Disadvantage : Evaluation of G and inversion : large CPU time
Numerical r
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Local versus Global

Local vs Global minima

e Obtained minima may be a local minima, but not a global minima. Change
starting value far away from initial one and look for second minima

e Errors : From the second derivative of the function in the minimum

1 9°F , ,  [102F\ "
F(x) = F(xo)+§w(x—xo) and o° = (gw)

— F(xo+0)= F(x0) +1

For correlated variables, calculate all derivatives and invert that second
derivative matrix to obtain error.
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Fit Exercise

Fit : Exercises
Fit a Gaussian distribution using
1. Analytical solution using likelihood method

2. Grid search method & (simplex method)

3. Using simple fitting command in “root” software

Entries 6000
Mean 0.05185
2501 Std Dev 1.998
- X2 / ndf 87.05/97
Constant 2395%38
200— Mean 0.05263 * 0.02581
Sigma 1.999 % 0.018
150
100
50—
0 L i
=10 -5 0 5 10
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Fit Exercise

Fit : Exercises

Fit using root software (TMinuit) :

This is data from muon lifetime expt (one of the expt in hardware session)

: Entries 3758
120 -------- OSSO Mean 2.784
' Std Dev 3.231
100py--===-"- T X2/ ndf 235.4/164
80Fl- - - - - - - (NI Prob 0.0002184
Constant 4.904 £ 0.028
6o UMt -p---------- Slgpe -0.4441 £ 0.0090
40 R Lt AR LR EE SRR EY
' U
20—------ e e T 3
0 1 Salle PPN Y 1< W 0 W
5 10 15 20
Time (Js)
T Entries 3758
120 -------- Ot Mean 2.784
' Std Dev 3.231
100y -=--==--- CTTTT X2/ ndf 4205/ 198
goF M- - - - (ST Prob 4.148e-18
Constant 4.772 % 0.026
cob—IMl -p---t--mea-- -0.3641 % 0.0066
40 O PO eSS PO CEEaC0 TN JOCECOOSO0
Ll !
20—------ QP OO OO O T O S 3
' I
0 | 2 PP 0 . fiall
5 10 15 20
Time (}is)
. Entries 3758
120fty - - - - - - - - R Mean 2.784
' Std Dev 3.231
100} -------- RS X2/ ndf 171.8/162
0.2837
4.945%0.028
-0.4717 £0.0100
0.002326 * 0.006521
35.69 95.16
--------- P
N
15 20
_______ Entries 3758
_______ Mean 2784
_______ Std Dev  3.231

6o "B-p-------------t---------
40F—-- Wh-- oo e
20F-----Whr---------F-----
o 5 10
Time (|is)

140

100
80
60
40
20

........ -------] Entries 3758
. Mean 2.784
"""" T Std Dev 3.231
........ e mmemo-| X2/ naf 247.5/198
e Prob 0.009681
""" "777777| Constant 4.918 £ 0.027
|+ I |, S e Slgpe -0.4519  0.0088
N L oo e Lcccmeeee - b
L ' : b
-------------- B e e e e e e e e = e
t 1 1 [
________ :_ I o oL 1 4 |
5 10 15 20
Time (}is)
. Entries 3758
-------- t=------1 Mean 2.784
: Std Dev 3.231
"""" 777777 K/ ndf 235.4 /164
" 0.0002184
4.904 * 0.028
-0.4441% 0.0090

Al P
15 20
Time (is)
. Entries 3758
120 -------- ot Mean 2.784
' Std Dev 3.231
100 --===--~ e X2/ ndf 261.9/196
0.001146
80 4922+ 0.028
60 -0.4381% 0.0095
0.00204 * 0.04549
40 31.29 * 699.04
20F-----Whg---------F--------- fo-------- 1
1 1|
0 LU SLS R PEE S £ BN |
15 20
140 4141 /196
0
LEa 4.927 £ 0.02139
100 -0.4424 * 0.01087
-0.01554 % 0.1711
80 -4.139 + 44.27
60F "B §---r-------mrem oo P re--d
1 1
e A S S
20F----"8§r--m-mmmrmmmm o R r---
% 15 20




Fit Exercise

Fit : Exercises

1. Fit excluding a part of the histogramme

2. Fit two independent histogrammes together.

00 AlLog =9.023 £ 0.004 AlLog =7.922 £ 0.006
7000 1--0.827 * 0.003 2500 T =-0.827 * 0.003
AGaus =3999.22 * 1547 i AGaus = 133059 * 8.14
6000 Il =5.994 * 0.004 »000k =62 * 0.006
0-0996 * 0.002 0=0996 * 0.002

5000

1500
4000

3000 1000

2000

500
1000

llllllllllllIIIIIIIIIIIIIIIII L)
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6 8 10 12

cc
o
=

Nur



Constrained Fits

In the general formulation of the least square problem, one can introduce a set
of constraint equations which will modify the quality of measured quantities as

well as unmeasured parameters significantly

Look at the general formulation of the Least Square problem

iy variables measured in an experiment
mY measurements of these variables

G the variance matrix

T unmeasured parameters
fi(#m) =01 = 1,---  k aset of k constraint equations

The best estimates of measured and unknown gquantities are obtained by
minimising
,\j") (m,z,\) = (m-— mu)‘L Gar(m —mg) + 2)\ff (x,m)

where A =vector (of k components) of Lagrange multipliers

Numerical methods



Fits with constraint relation

‘2

A = () = 2 [(777- =y I"I?.") Gar + Alfn (J..,n?.)] (A)
2}; = 0= 2\"f;(z,m) (B)
x
‘%‘ =0 = 2f(x.m) constraint equations  (C)
df
where fm - S
()
. o= I
o

In general, the constraint relations are not linear in  x, m
—» use iterative procedure

Start with an initial guess. Calculate values for the (¢ 4 1) th iteration
using the results of the ¥ th iteration

Linearised constraint equation (C) =
frl = 0= fY+ b i (;1:"+1 — ;1:") o bt (m"“‘”1 - m”) (D)

Numerical methods



Fits with constraint relation

Equation (A) gives

(n?.l/-+-1 iJz8 ,rn())f G;\[ - - (Au-}-])f f;:?+1
s (mu+1 B mo)f _ - (/\u+1)’rf;;+1(,,_nl
> m*tom = -Gl (fur) At (A)

Thus (D) becomes

fo+ @t =ab) + fr m® —m¥ = Gy (RN = 0 (|
approximating f**'  with f*

Let R = f"+ fr(m®"-m") (F)
S = -:r,z(;gll( -rlrlz)f (G)
R.S depend on quantities known at iteration ¥ =
fo(z**' =2") + R- S\ = 0
S L 2 e q— [R+ fu( w41 —;I‘U)] (H)

= SR + S fZ (¥ - 2¥)

Numerical methods



Fits with constraint relation

Put this back in (B) =

0 = Af = [ 1R+91fz(z+1_, ]ffz
e Rf(k ) fl ( V1 g )T(fz) ( )ff;’
= (z¥t - ;1:")’f () (S-l)f fr = =RI(5” )’r £
— (f;/)f S—lf; (mu+1 - ;l?") =20 (f:zr/)f S—-IR
> (@1 -2) = -[tse]” gisr 0
RHS of (1) is completely known at the iteration =
Substitute this in (H) = A
m

Substitute A" in (A)

So go from step to step choosmg m, T, A satisfying the constraint
relations and minimising X~ S|mu|taneously
lterations stop when
e constraint relations are balanced at a level better than the required
precision
e derivatives %}n : %‘, are sufficiently close to O
e x”change per iteration is small

>
-

Numerical methods



Fits with constraint relation

’ J u u " —l
Now m“*! z"*! can be expressed explicitly in terms of 0. G g
Approximate to a linear relation

m*t! = g(my);
vt = h(my)
Carry out error propagation

: —

23 G ey f Og
Gt = (')mnG‘” ((')m.(,)
oy OB g TR
Cavar = (')nu)GM ((’)mu)

and correlation between measured and unmeasured quantities

;
g —1 oh
( mo ) GAV (f}m 0 )

Now (A’) = mv+l = ml — G’;,l( ,‘;?)i Avtl
S0 dg O i
‘ B Ga‘] (fm) ‘
el A from (H)
= 1-G@ ()t s ' OR + v d (z*+! - z¥)
M m/) ~ -anu) If)nu, ;
et oo | OR et o= ety OR
= ol GMI (fm)TS ! : B f.r (frfs lf;r) f:fs ]._ from (I)
_dmn dmyp
_ __ =1 v T -1 [ v g vt o—1 pv - vt o—1 pv fr m F
Numerical methods = 1-Gy (fm)'S _f’" f (87 f) 'S ""] 0 ( )



Fits with constraint relation

Similarly O o Bl o W e e

(-)nu) x = xT xT m
Thus the variance becomes

(1;2‘ ¥ = GTII = GKI f::zTS fm(';ll +

[ —_ i/ [ — [ o | [
(’\[ fnjs f.r (f.r TS f.r) f.r tS fm 1
-1 ’ — s -1

Gloe: &= fAS™E)
And the correlation 1

C("?JT)“ 1 — (-' \[ :,I?T Lq_lf_:-l ( _:-IT Lq—lf_:-l)

So the overall correlation matrix hecomes

C;z' 1 C(m.r)" I
f & |
('(m.r)‘ GJ?“ +1

The fit procedure reduces the variance on measured gquantities but
Introduces some correlation among them where none existed initially

Numerical methods



An Application

An experiment wants to measure the mass of one particle which is
produced as a pair in electron-positron collisions and then each of them

decays into a pair of objects

e WET W - W
l I i

= 4]
- qq

Measure the energies of the 4 jets coming from the 4 quarks and their
angles. Jet directions are well measured but the energies are not so well
measured. So try to utilise some of the known phenomena and see if this

can help the measurements
* Energy and momentum are conserved in the particle production and

decay processes
e The two W’s have the same mass
e Since electrons and positrons collide head-on, the initial state

momentum = 0 and initial state energy = 2F Beam
Here all quantities are measured with some precision —. T has no

entries

Numerical methods



Application of Constrained Fit

Choose variables: m = FE;, 6. ¢i, 3
h 3 VE - m for i = 1,++-4
wnere ‘2, = or 1 =
Aol | El
Constraint equations: Y E; —2Ep.qm = 0 1
=1
4
Z;’?,-E,— sinfl;cosgp; = () f2
=1
4
Z_B,—E,r sinf;sing; = 0 f 3
=1
4
Z _&3,‘ E,‘ COS 9;‘ = 0 ‘fi
=1

(E; + E5)? — (E3 + E4)* — (B, E; sin 0y cos 6y + By Ep sin b, cos ¢9)” +

(B3 FE sin 04 cos g + (344 sin 04 cos @4) — (31 F1 sin @4 sin ¢ + 39 E5 sin f5 sin gﬁg)z —
(B3B3 sin 03 sin és + B4 E4 sin 0, sin b4)° — (B1E; cos0; + BoEs cosfs)” +

(B33 cosf3 + 34F4 cos 94) =()

fs

Numerical methods



Application of Constrained Fits

Need to evaluate the derivatives:

. .
r f %
dfr O f 5 2 , 5+,
O F; = OE; = [3;sin#; cos ¢, ;% = [3;sin ), sin ¢;
Of O f | s
90, = ) a0, = [3; E; cos ; cos ¢; (();g 4 —  B.E; cos8;sin ¢,
dfi J fo .- . . 9 l
- — 0 - =t - 131 E’i S 9,1' S 1 ( f:‘ aus e ol
d; | d; | THTEme Oo; Pik; sin b; cos
df dfs o - af.
3, = 0 e T F; sinf; cos ¢, ()f;: — E,sin#, sin ¢,
m m
1 53
:))gl = /3, cosb,
3{;: = —03;E;siné;
df4 . 30
D '
df.
f1 = F,cosb;



Results from the fits

Measurement was done with data using /s = 189 GeV

Entries

MERSHRED
MAsS

51600 T
51400 2
00 é- 1200
e _ 1000
800 - s00 -
600 600 F-
400 - 400 F
200 — 200 F-
0 4;) — 60 T 810 = 100 040 l 60 — 80 = 100
Mgz (Gev) Mq3 (SEV)
After 4C fit After 5C fit
240 =0 My = May

E; = 2Epg,,
Numerical methods Z,, ! Beam



Kinematic Fit (Example)

Kinematic fit
http: //www.phys.ufl.edu/~avery/fitting.html

Assume the following decay chains of B meson

—0

B — D*g~
D — D'zt
DY 5 K—ntxY

™ — vy

: : : : : : —0
Several kinematic constraints may be applied to improve mass resolution of B,
e.g. and example from B-factory,

1. Mass of vy to M,o (Mass constraint)
the K—7nT7” mass is equal to Mpo

K~ and 7" from D decay intersect single space point (vertex constraint)

B\

Inv mass of D7 is equal to Mp-+

5. Slow 7" from D™ decay and fast 7 from B’ decay come from same space
point

6. Energies of final state particles is the energy of beam (in CM frame)
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Kinematic Fit (Example)

Measurement of three angles of a triangle
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For same errors in all three measurements, error on corrected angles are (2/3) x 0.
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Simple calculation, because the function was linear in the variables. But, in
general kinematic fitting becomes an iterative procedure.

Improvement of Po in the reconstruction of the mass of 7 from two photons

e Measured parameters (y) : Ei, 01, ¢1, Ea, 05 and ¢

e Constraint 2E1Eo (1 — cosfy9) — m?TO = f(y) — m?TO =0, with
cos f15 = sin fy sin By cos(Py — ¢o) + cos by cos by

In matrix notation,

V-l Dy =BT (m2, — f(y) — B - Dy)/o?
(V='+ BT B/o%) - Dy = B" - (m% — f())/0%
Dy = (V' + B B/o%)™" - BT - (m% — f(y))/o%

With an iterative procedure, recalculate parameters, until the change in m, and
\? is lower than a certain value (e.g., 1.e7°).

Error on the fitted mass,

™

%=V |[[-B"-(B-V-B") " B-V]|

Derive this expression



Results from Kinematic Fit
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