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OBJECTIVES

• GW astronomy has seen spectacular success since 2015

• Data analysis algorithms form a critical component of the 

technological base behind these successes

• We will walk through a key data analysis challenge for ground-

based IFOs to illustrate the critical role of data analysis in GW 

astronomy

• Techniques developed for solving these challenges have broad 

applicability

2



GW170817: DOUBLE NEUTRON STAR INSPIRAL AND MERGER
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•Noise dominated data

•2nd Gen detectors: signals 

appear rarely

•Localization needs data from a network of detectors

•Multi-messenger astronomy: Low-latency GW 

detection needed

Data artifacts, such as 

glitches, must be mitigated 

for better sensitivity

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101
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Coherent analysis

• Pai, Bose, Dhurandhar, Physical Review 
D,  64, 042004 (2001)

• Klimenko, Mohanty, Rakhmanov, 
Mitselmakher, Physical Review D 72, 
122002 (2005)

• In theory: more sensitive, simpler

Semi-coherent analysis

• Most current flagship pipelines 
(GstLAL, PyCBC, MBTA)

• SPIIR uses coherent analysis for 
candidate events (plus a segmented 
time-domain matched filter approach)

• In theory: less sensitive, complex

Problem: ≈ 2000x more expensive  
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HIGHLIGHTS

• Problem solved: Accelerated Fully-Coherent All-sky (FCAS) search: 

≈50x faster than real-time (4-detector network; 4096Hz sampling 

frequency)

a. ⇒Low latency FCAS search now possible on all data →

potentially higher detection sensitivity 

b. Normandin, Mohanty, PRD, 2020;  Normandin, Mohanty, Weerathunga, 

PRD, 2018; Weerathunga, Mohanty, PRD, 2017

• Novel glitch veto: byproduct of the FCAS search instead of an add-on 

algorithm
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𝑠 𝑡 = 𝐹+( ො𝑛)ℎ+ 𝑡 + 𝐹×( ො𝑛)ℎ× 𝑡
Long-wavelength approximation

ℎ+

ℎ×

ො𝑛

𝐹×( ො𝑛)𝐹+( ො𝑛)
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𝑠𝑖 𝑡 = 𝐹+,𝑖(ො𝑛)𝐵[Δi ො𝑛 ]ℎ+ 𝑡 + 𝐹×,𝑖( ො𝑛)𝐵[Δi ො𝑛 ]ℎ× 𝑡 )

𝐵 𝛿 𝑓 𝑡 = 𝑓(𝑡 − 𝛿)



NETWORK ANALYSIS INVERSE PROBLEM

𝑥1(𝑡)
⋮

𝑥𝑁(𝑡)
=

𝐹+,1 ො𝑛 𝐵[Δ1 ො𝑛 ]

⋮

𝐹×,1 ො𝑛 𝐵[Δ1 ො𝑛 ]

⋮
𝐹+,𝑁 ො𝑛 𝐵[Δ𝑁 ො𝑛 ] 𝐹×,𝑁 ො𝑛 𝐵[Δ𝑁 ො𝑛 ]

ℎ+(𝑡)
ℎ×(𝑡)

+
𝑛1(𝑡)
⋮

𝑛𝑁(𝑡)

GW strain signal
GW network data

Noise

• Inverse problem: infer ො𝑛, ℎ+,×(𝑡) given the network data

• Bayesian or Fisherian approach: likelihood function

• Detection: significance of the inverted solution
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NETWORK LOG-LIKELIHOOD
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max
𝜏, ො𝑛

max
𝑡𝑎

max
ത𝑎

ln( 𝑝(𝑥|Θ)) = max
𝜏, ො𝑛

max
𝑡𝑎

𝐻 ො𝑛, 𝑡𝑎 , 𝜏

1×4

𝑀−1 ො𝑛

4×4

𝐻𝑇( ො𝑛, 𝑡𝑎, 𝜏)

ො𝑛 dependent linear combinations of IFFT( ǁ𝑧𝑖 .∗ ෤𝑞𝑟
†(𝜏)), 𝑟 = 1,2 ෨𝑏 = FFT(𝑏)

ǁ𝑧𝑖[𝑘] = ෤𝑥𝑖[𝑘]/𝑃𝑆𝐷𝑖[𝑘] Quadrature templates (0 and 
𝜋

2
initial phase signals)

Joint PDF

Linear

ത𝑎: Reparametrized Distance, initial phase, orbital 

inclination, and polarization angles

Non-linear

chirp times 𝝉 (functions of component masses), 

spins, orbital eccentricity,…, sky location ( ො𝑛), 
time of arrival (𝑡𝑎)

𝑝 𝑥 Θ = 𝑝𝑁𝑜𝑖𝑠𝑒(𝑥 − 𝑠 𝜃 )

𝒙𝟏, 𝒙𝟐, … , 𝒙𝑫 ∈ ℝ𝑵

Detection:  max
𝜃

(… )

Estimation:  arg max
𝜃

(… )

Gaussian 

noise



GLOBAL OPTIMIZATION CHALLENGE
SINGLE DETECTOR SEARCH

Newtonian signal model

ta : time of arrival

 : Chirp time
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REGULARIZATION

𝐻 ො𝑛, 𝑡𝑎, 𝜏 𝑴−𝟏 ෝ𝒏 𝐻𝑇( ො𝑛, 𝑡𝑎 , 𝜏)

•𝑀(ො𝑛) can become ill-conditioned 

•Especially serious for the LIGOs due to 
their close alignment

Regularization

𝐻 ො𝑛, 𝑡𝑎, 𝜃 (𝑀 + 𝝀𝑷)−1𝐻𝑇( ො𝑛, 𝑡𝑎, 𝜃)

•Penalty matrix (𝑃): user-defined

•Regulator gain (𝜆):  how to select?

•L-curve: Balance Residual (data – estimated 
signal) norm against Solution norm ത𝑎𝑃ത𝑎𝑇

•Regularization: Bias-Variance trade-off
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ACCELERATING COHERENT NETWORK ANALYSIS

Deterministic searches 

• Grid-based:

• Not scalable

• Exponential growth in cost with 
number of parameters

• Gradient-based methods: Trapped by 
local maxima

Stochastic searches

• Markov Chain Monte Carlo 
(MCMC): Currently used 
(LALInference) for parameter 
estimation

• Surrogates of full MCMC (e.g., 
BayeStar) by imposing some 
approximation on the posterior
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1. Particle Swarm Optimization (Kennedy, Eberhart, IEEE, 1995; 88,885 citations)

• 10x fewer likelihood evaluations compared to grid-based searches

2. Graphics Processing Units (GPUs) 



PARTICLE SWARM OPTIMIZATION
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• Global optimization algorithm 

inspired by emergent behavior of 

bird flocks

• Evolution of flocking behavior 

driven by optimization challenges



PARTICLE SWARM OPTIMIZATION
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Swarm Intelligence methods for statistical 

regression, Mohanty, CRC press (2019) 



IMPLEMENTATION

• Parallelization hierarchy

MPI → OpenMP

𝐶𝑃𝑈

→CUDA
𝐺𝑃𝑈

• 8 parallel PSO runs per data segment 
→ pick the best run 

• 8xGPU  50x faster than CPU code

• PSO+GPU:  500x faster than grid-
based search

• Results: DNS signal; network SNR=12

10/16/24

15

CRADLE

• NSF + DoD: $1.25 million

• Total: 96 NVIDIA A100

• 32 GPUs interlinked with 

NVLink: AI workloads

• Dedicated

• 64 NVIDIA A100 80GB

• 8 GPUs per node
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2-DETECTOR NETWORK

• LIGO-Hanford, LIGO-

Livingston

• Sky localization with and 

without gain selection

• Simulated Gaussian 

stationary noise with 

design Power Spectral 

Densities
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4-DETECTOR NETWORK

• LIGO-Hanford, LIGO-

Livingston, Virgo, KAGRA

• Sky localization with and 

without gain selection

• Simulated Gaussian 

stationary noise with 

design Power Spectral 

Densities

• Realistic error estimation 

beyond Fisher Information 



GLITCH MITIGATION

• Ground-based IFOs are affected by 

frequent interference signals from 

instrumental and environmental 

sources.

• Wu et al, ArXiv: 2401.12913v1
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GLITCH VETO USING UNPHYSICAL TEMPLATES 

• Masses to chirp times map is one-to-

one but not onto  unphysical 

sectors in chirp time space 

• PSO performs better for hypercubical

spaces  unphysical sectors covered 

at no extra cost

• One can augment the search space 

using the negative chirp time quadrant

• Glitches match physical & unphysical 

templates; GW signals do not
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GLITCH VETO USING UNPHYSICAL TEMPLATES

• Girgaonkar, Mohanty, Physical 
Review D 110, 023037 (2024)

• 131 hours of LIGO data (L1, 

H1, all O-runs)

• 99.9% rejection of glitches 

with no loss in detections 

(injected signals ≤ 80 𝑀⊙

total mass)
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SUMMARY

• Data analysis is a critical component of GW astronomy and computational 
bottlenecks often limit us from reaching higher search sensitivity

• Nature inspired optimization heuristics are powerful techniques for addressing 
some of the key challenges

• GPU acceleration is extremely significant and should be adopted where 
possible

• Open challenges abound. Examples: 

• 3rd generation detectors: longer signals with higher rate → Glitch mitigation 
problem becomes harder

• Space-based detectors: Embarrassment of riches but only if the data analysis 
problems are solved
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THANK YOU!
QUESTIONS?

Soumya D. Mohanty, PPC 2024 10/16/24 22



EFFECT OF GLITCHES ON DETECTION SENSITIVITY

➢arXiv:1710.02185v3 [gr-qc]

➢Histograms of single detector PyCBC triggers from the Livingston (L1) detector. 
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histogram of single detector triggers 

in SNR. The tail of this distribution 

extends beyond SNR = 100. 

histogram of single detector 

triggers in re-weighted SNR 

using 𝜒2-veto.


