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INTRODUCTION

▶ As is widely recognized, the universe is comprised of both visible and dark components. The
dark matter stands out as an undetectable entity within the electromagnetic radiation spectrum.

▶ The dark matter encompasses both baryonic and non-baryonic forms.
▶ In the baryonic form, dark matter manifests as astronomical entities like massive and compact

haloes, primarily made up of ordinary baryonic matter yet emitting negligible electromagnetic
radiation.

▶ The non-baryonic dark matter is characterized by hypothetical and actual particles such as the
Weakly Interacting Massive Particles and axions.

▶ The state of matter known as Bose-Einstein condensate (BEC) arises in the non-baryonic realm,
formed when particles called bosons undergo cooling to near absolute zero 1.

1Y. Mambrini, S. Profumo, and F. S. Queiroz, Phys. Lett. B 760, 807-815 (2016).
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INTRODUCTION

▶ The assumption is made that dark matter exists in the form of a bosonic gas below a critical
temperature, leading to the formation of Bose-Einstein condensate (BEC). 2.

▶ It is noteworthy that the EoS of conventional dark matter is derived as that of a barotropic fluid.
▶ Through the consideration of the dark matter halo existing in a quantum ground state, the equa-

tion of state (EoS) was derived3 as p ∝ ρ2 .
▶ Note that, the equation of state (EoS) p = 0, p = αρ, and p = βρ2 characterize the cold dark

matter, normal dark matter, and dark matter halo respectively.
▶ These observations motivate to consider the Extended Bose-Einstein Condensate (EBEC) model,

a comprehensive model combining normal dark matter and the quantum ground state.

2C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet, Phys. Rev. Lett. 75, 1687 (1995).
3T. Harko, Phys. Rev. D 83, 123515 (2011).
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THE MATHEMATICAL FORMULATION

The standard general relativity uses spacetime curvature to determine gravity, by incorporating a
torsion-free and metric-compatible Levi-Civita connection. In f (Q) gravity theory, we utilize sym-
metric teleparallel connection that is obtained via imposing following constraints,

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ = 0 (1)

and
Tλ
αβ = Γλ

βα − Γλ
αβ = 0 =⇒ Γλ

αβ = Γλ
βα (2)

The curvature free constraint ensures that the parallel transport is independent of the path taken,
preserving the concept of parallelism over long distances. This characteristic is the basis for the term
teleparallel. Moreover, the vanishing torsion makes the connection Γ symmetric in its last two in-
dices. Thus, the connection Γ is known as the symmetric teleparallel connection and the correspond-
ing gravity formulation is called symmetric teleparallel gravity. Moreover, we define the following
non-metricity tensor arises due to the metric incompatibility of the symmetric teleparallel connection
Γ,

Qλµν ≡ ∇λgµν = gµν,λ − Γβ
λµgβν − Γβ

λνgµβ ̸= 0 (3)

The difference between the associated connection Γλ
µν and the Levi-Civita connection Γ̊λ

µν is known
as the disformation tensor

Lλ
µν = Γλ

µν − Γ̊λ
µν , (4)
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THE MATHEMATICAL FORMULATION

In addition, we define the non-metricity scalar

Q = −QλµνPλµν (5)

where

Pλ
µν :=

1
4

(
−2Lλ

µν + Qλgµν − Q̃λgµν −
1
2
δλµQν −

1
2
δλν Qµ

)
, (6)

is the superpotential tensor.
The f (Q) gravity action reads as4

S =
1
2

∫
f (Q)

√
−gd4x +

∫
Lm

√
−gd4x (7)

where, f (Q) is the function of scalar term Q, Lm is the Lagrangian density, and g = det(gµν). The
variation of the action term (7) with respect to the metric, corresponds the following metric field
equation,

2
√−g

∇λ(
√
−gfQPλ

µν) +
1
2

gµν f + fQ(PµλβQν
λβ − 2QλβµPλβ

ν) = −Tµν (8)

Here, T is the stress-energy tensor given by,

Tµν =
−2
√−g

δ(
√−gLm)

δgµν
(9)

4J.B. Jiménez, L. Heisenberg, and T. S. Koivisto, JCAP 08, 039 (2018).
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THE COSMOLOGICAL f (Q) MODEL

We begin with following homogeneous and isotropic flat FLRW line element,

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] (10)

The non-metricity scalar Q for the metric (10) is given as

Q = 6H2 (11)

Then the corresponding energy momentum tensor becomes

Tµν = (ρ+ p)uµuν + pgµν (12)

Here ρ denotes matter-energy density and p is the pressure component and uµ = (1, 0, 0, 0) is the four
velocity vector. Now, the Friedmann equations for an arbitrary f (Q) function is given as,

3H2 =
1

2fQ

(
−ρ+

f
2

)
(13)

and

Ḣ + 3H2 +
˙fQ

fQ
H =

1
2fQ

(
p +

f
2

)
(14)
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THE COSMOLOGICAL f (Q) MODEL

We can rewrite equations (13) and (14) as follows,

3H2 = ρ+ ρde (15)

Ḣ = −1
2
[ρ+ ρde + p + pde] (16)

where ρde and pde are energy density and pressure of the dark energy fluid part arising due to non-
metricity component, and can be expressed as follows,

ρde =
1
2
(Q − f ) + QfQ (17)

and
pde = −ρde − 2Ḣ(1 + fQ + 2QfQQ) (18)

Further, we write the continuity equation for both matter and dark energy component as,

ρ̇+ 3H(ρ+ p) = Q (19)

and
ρ̇de + 3H(ρde + pde) = −Q (20)
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THE COSMOLOGICAL f (Q) MODEL

where Q is defined as an interaction term arising due to the energy transfer between dark compo-
nents of the universe. It is evident that the parameter Q must possess a positive value, indicating the
occurrence of energy transfer from dark energy to dark matter. In this context, considering Q as the
product of the energy density and the Hubble parameter is a natural choice, given that it represents
the inverse of cosmic time. Therefore, we adopt the specific expression Q = 3b2Hρ, where b is the
intensity of energy transfer.
We assume an extended form of the equation of state for dark matter known as the Extended Bose-
Einstein Condensation (EBEC) for dark matter EoS as 5

p = αρ+ βρ2 (21)

Here, α represent the single-body interaction arising from conventional dark matter, while β is in-
troduced to signify the two-body interaction originating from the dark matter halo. In particular,
α = β = 0 reduces to the cold dark matter case, whereas the case β = 0 reduces to the normal matter
scenario. Further, the case α = 0 represents dark matter halo, while α ̸= 0 and β ̸= 0 represents the
contribution from both dark matter halo and the normal matter.

5E. Mahichi1 and A. Amani, Phys. Dark Univ. 39, 101167 (2023).
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THE COSMOLOGICAL f (Q) MODEL
f (Q) MODEL

We consider the following power-law f (Q) function6,

f (Q) = γ

(
Q
Q0

)n

(22)

where Q0 = 6H2
0 and γ and n are free parameters. Then by using equation (22) in the equation (15),

we obtained

ρ =
(1 − 2n)

2
γ

(
H
H0

)2n

(23)

On evaluating the equation (23) at present redshift z = 0, we have

ρ0 =
(1 − 2n)

2
γ (24)

and therefore, we have

ρ = ρ0

(
H
H0

)2n

(25)

Now, on integrating the continuity equation (19) for the matter component, we acquired

ρ = ρ0

(
cη − β

cη(1 + z)3η − β

)
(26)

Here c is the constant of integration and η = α+ 1 − b2.
6H. Shabani, A. De, and Tee-How Loo, Eur. Phys. J. C. 83, 535 (2023). 9 / 21



THE COSMOLOGICAL f (Q) MODEL
f (Q) MODEL

We obtained the expression of the Hubble parameter, by utilizing equations (25) and (26), as follows,

H(z) = H0

(
cη − β

cη(1 + z)−3η − β

) 1
2n

(27)
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THE COSMOLOGICAL f (Q) MODEL
MODEL PARAMETERS ESTIMATION

We estimate the median value of parameters of our f (Q) model. We utilize the Markov Chain Monte
Carlo (MCMC) sampling technique and optimization method in Python package emcee 7.

A. Hubble Data:
The Hubble datasets incorporates the 31 H(z) measurements of passively evolving massive galaxies
covering the redshift range 0.07 ≤ z ≤ 2.41 8.The χ2 function corresponding to H(z) data points
reads as

χ2
H =

31∑
k=1

[Hth(zk, θ)− Hobs(zk)]
2

σ2
H(zk)

. (28)

B. Pantheon+SH0ES Samples:

In the last two decades, several compilations of Type Ia supernova data have been introduced, such
as Union, Union2, Union2.1, JLA, Pantheon, and the most recent addition, Pantheon+SH0ES. The
corresponding χ2 function is expressed as,

χ2
SN = DTC−1

SND (29)

7D. F. Mackey et al.; Publ. Astron. Soc. Pac. 125; 306(2013).
8H. Yu; B. Ratra; and F.-Y. Wang; Astrophys. J. 856; 3 (2018).
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THE COSMOLOGICAL f (Q) MODEL
MODEL PARAMETERS ESTIMATION

Here, CSN
9 represents the covariance matrix associated with the Pantheon+SH0ES samples, encom-

passing both statistical and systematic uncertainties. Moreover, the vector D is defined as

D =

{
mBi − M − µ

Ceph
i i ∈ Cepheid hosts

mBi − M − µth(zi) otherwise
(30)

where mBi and M are the apparent magnitude and absolute magnitude, respectively and µ
Ceph
i in-

dependently estimated using Cepheid calibrators. In addition, the µth(zi) represents the distance
modulus of the assumed theoretical model, and it can be expressed as,

µth(zi) = 5log10

[
DL(zi)

1Mpc

]
+ 25, (31)

where, DL(z) is the luminosity distance assumed theoretical model, and it can be expressed as,

DL(z) = c(1 + z)
∫ z

0

dx
H(x, θ)

(32)

where, θ is the parameter space of the assumed model.
9D. M. Scolnic et al., Astrophys. J. 938, 113 (2022).
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THE COSMOLOGICAL f (Q) MODEL
MODEL PARAMETERS ESTIMATION

We obtain the constraints on free parameter space for the combined CC+Pantheon+SH0ES samples
utilizing the Gaussian priors as [50, 100] for H0, [−5, 0] for n, [0, 5] for β, [−5, 0] for η, and [0, 1] for c.
In order to obtain the best fit value of parameters, we minimize the total χ2

total function that is defined
as follows,

χ2
total = χ2

CC + χ2
SN (33)

We obtained constraints on the free parameter space with 68% confidence limit as H0 = 72+0.11
−0.12Km/s/Mpc,

n = −2.9+0.066
−0.067, β = 0.83+0.12

−0.11, η = −2.5+0.06
−0.061, and c = 0.17+0067

−0.0068. In addition, we obtained the mini-
mum value of the χ2

total as χ2
min = 1642.55. The corresponding contour plot describing the correlation

between different model parameters within the 1σ−3σ confidence interval is presented in the Figure
(1).
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THE COSMOLOGICAL f (Q) MODEL
MODEL PARAMETERS ESTIMATION

Figure. The contour plot for the given model corresponding to the free parameter space (H0,n, β, η, c) within
the 1σ − 3σ confidence interval using CC+Pantheon+SH0ES samples.
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THE COSMOLOGICAL f (Q) MODEL
MODEL COMPARISON

To evaluate the robustness of our MCMC analysis, it is crucial to perform a statistical assessment
using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). It can be
expressed as follows,

AIC = χ2
min + 2d (34)

BIC = χ2
min + dln(N) (35)

Here, d represents the number of parameters within the given model and N represents the number
of data samples used in the MCMC analysis. A value of ∆AIC less than 2 suggests strong evidence
in favor of the assumed theoretical model, while in the range of 4 < ∆AIC ≤ 7, there is a moderate
support. Similarly, ∆BIC is less than 2 suggests strong evidence in favor of the assumed theoretical
model, while in the range of 2 < ∆BIC ≤ 6, there is a moderate support.
We obtained AICModel = 1652.55 and BICModel = 1679.8 and hence we obtained ∆AIC = 0.85 and
∆BIC = 15.5, where ΛCDM value taken to be AICΛCDM = 1653.4 and BICΛCDM = 1664.3. Thus, it is
evident from the ∆AIC value that there is strong evidence in favour of the assumed theoretical f (Q)
model. However, it is well known that large number of parameters compensate the high ∆BIC value.
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THE COSMOLOGICAL f (Q) MODEL
EVOLUTIONARY PARAMETERS

The deceleration parameter is an essential tool to quantify the evolutionary phase of expansion of the
universe. It is defined as follows,

q = −1 − Ḣ
H2 (36)

Median Value

1-σ Confidence limit
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Figure. Profile of the deceleration parameter and effective energy density vs redshift corresponding to
obtained parameter constraints with 68% confidence limit.
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THE COSMOLOGICAL f (Q) MODEL
EVOLUTIONARY PARAMETERS

It is evident that the assumed model shows a transition from decelerated epoch to the de-Sitter type
accelerated expansion phase, with the transition redshift zt = 0.288+0.031

−0.029. The present value of the
deceleration parameter obtained as q(z = 0) = q0 = −0.56+0.04

−0.03 (68% confidence limit), that is quite
consistent with observed ones. Further, we obtained expected positive behavior of the effective en-
ergy density.
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THE COSMOLOGICAL f (Q) MODEL
THERMODYNAMICAL STABILITY

We investigate the thermodynamical stability of the assumed theoretical model by examining the
sound speed parameter. In thermodynamical stability, the variation of pressure in relation to energy
density becomes the primary focus, leading us to introduce the sound speed parameter, denoted as
c2

s , in the subsequent expression,

c2
s =

∂p
∂ρ

=
∂zp
∂zρ

(37)

where ∂z =
∂
∂z . Here, it is noteworthy that the condition c2

s > 0 indicate stability, while c2
s < 0 signifies

instability.

b=1.86

b=1.88

b=1.9
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Figure. Profile of the sound speed parameter vs redshift corresponding to the value b = 1.86, b = 1.88, and
b = 1.9.
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CONCLUSION

▶ In this article, we attempted to explore the dark sector of the universe. We considered Extended
Bose-Einstein Condensation (EBEC) EoS for dark matter with the modified f (Q) lagrangian.

▶ We considered the power law f (Q) lagrangian f (Q) = γ
(

Q
Q0

)n
, where γ and n are free param-

eters. We present the corresponding Friedmann-like equations and the continuity equation for
both dark components along with an interacting term that signifies the energy exchange between
the dark sector of the universe.

▶ We obtained the analytical solution of the corresponding equations. Further, we utilize the
Bayesian analysis to estimate the posterior probability through the likelihood function and the
MCMC sampling technique.

▶ The obtained constraints on the free parameter space with 68% confidence limit are H0 = 72+0.11
−0.12Km/s/Mpc,

n = −2.9+0.066
−0.067, β = 0.83+0.12

−0.11, η = −2.5+0.06
−0.061, and c = 0.17+0067

−0.0068.
▶ In addition, to examine the robustness of our MCMC analysis, we estimated the AIC and BIC

value. We obtained ∆AIC = 0.85 and ∆BIC = 15.5, and hence it is evident from the ∆AIC value
that there is strong evidence in favor of the assumed theoretical f (Q) model. However, it is well
known that a large number of parameters compensate for a high ∆BIC value.
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CONCLUSION

▶ Further, we found that the assumed model shows a transition from the decelerated epoch to the
de-Sitter type accelerated expansion phase, with the transition redshift zt = 0.288+0.031

−0.029, along
with the present value of the deceleration parameter as q(z = 0) = q0 = −0.56+0.04

−0.03 (68% confi-
dence limit), which is quite consistent with cosmological observations.

▶ Lastly, we investigated the thermodynamical stability of the assumed theoretical model by ex-
amining the sound speed parameter.
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