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Dark Matter (DM- )χ

https://www.darkenergysurvey.org/the-des-project/science/

Indirect Detection Collider SearchDirect Detection

Candidates

10−22eV eV
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1057GeV ∼ 1M⊙

ULTRA-LIGHT AXIONS.…WIMPS….MASSIVE PRIMORDIAL BLACK HOLES

χ + SM → χ + SM χ + χ → SM + SM SM + SM → χ + χ

Non-annihilating Heavy DM particles 
with some non-gravitational interaction with SM particles
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Direct Detection

Terrestrial Experiments

Phys. Rev. Lett. 131, 041002


Exposure
Terrestrial Detector—kTon year

Neutron Star as a detector— kTon year1033−36 ×
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Direct Detection
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Heavy DM— 
smaller fluxSmaller Cross-section— 

Neutrino Floor

Exposure
Terrestrial Detector—kTon year

Neutron Star as a detector— kTon year1033−36 ×

Another exciting probe can be Gravitational Wave (GW) detectors !!

High Cross-section— 
Interacts before 

reaching the detector
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The Scenario We Study
DM particles get captured after interacting with the stellar constituents ( )VDM < Vesc

Eventually they lose their energy after successive interactions and thermalise 

The DM particles being heavy travel towards the core and forms a thermalised core 

The heavier the DM particle the denser the core  

Under specific circumstances the core starts to collapse  and forms a mini BH 
 DM particle∼ 10−17M⊙ for 105 GeV

That mini BH if not too small can eat up the whole progenitor and forms a similar mass BH

 BH.  ∼ 1012s for 10−16M⊙

 Non-observation of GW signatures from these low-mass BHs leads to stringent 
constraints in DM parameter space.
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Transmuted Black Hole (TBH)
★ DM capture in Sun-like stars 

 

 

★ DM thermalisation 

 

★ Dark core collapse & micro-BH formation 

 

★ Growth of the micro BH & it eats the host 
star  

Mass of the micro BH ~    

mχ = 105 GeV, σχn = 10−30 cm2, Tcore = 1.5 × 107 K

Capture rate ∼ fcapCgeom ∼ 1.3 × 1025 s−1

rth ∝
T
mχ

∼ 2.8 × 105 m

τcollapse = 2 × 1011 years

7.8 × 10−9M⊙

τswallow = 10.5 years

τtransmutation = τcollapse + τswallow

★ DM capture in Neutron stars 

 

 

★ DM thermalisation 

 

★Dark core collapse & micro-BH formation 

 

★Growth of the micro BH & it eats the host 
star  

Mass of the micro BH ~    

 

mχ = 105 GeV, σχn = 10−45 cm2, T = 2.1 × 106 K

Capture rate ∼ fcapCgeom ∼ 2.3 × 1020 s−1

rth ∝
T
mχ

∼ 5 cm

τcollapse = 4.8 × 108 years

10−16M⊙

τswallow = 3 × 104 years
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LVK Search for Low-Mass BH
LVK Collaboration (arXiv:2212.01477)

LVK concludes null detection of low mass 
BH mergers hence they put upper limits on 

the merger rate with 90% confidence. 

 

  is the detector sensitivity. 

μ90 = R90⟨VT⟩ ≥ 2.303 excluded

⟨VT⟩

We propose that DM parameters for which, 
 are excluded. RTBH(mc) > R90(mc)



LIGO as a DM Detector?

Bhattacharya, Dasgupta, Laha, Ray (PRL, 2023)

Priors for Bayesian Analysis 

 
 

mχ ∈ [104 − 108 GeV]
σχn ∈ [10−50 − 10−44 cm2]

RBNS ∈ [10 − 1700 Gpc−3 yr−1]

Hybrid Analysis 

No priors on DM parameters.  

Forecast with  50 × ⟨VT⟩



LISA as a DM Detector?

Beyond LISA's Sensitivity

fGW = 3.510-5 s-1

2 4 6 8 10 12

10-5

510-5

10-4

Orbital Separation [R/R⊙]

f G
W
[s

-1
]

Close stellar binaries can emit monochromatic continuous GW waves in their 
inspiral phase.


For sun-like symmetric stellar binaries, if their orbital separation is within 
 , LISA will be sensitive in this frequency range.4R⊙ − 9.5R⊙

·fgw ≈ 10−23 Hz/s ( ℳ
0.87M⊙ )

5/3

( fGW

3.5 × 10−5 Hz )
11/3

The frequency evolution of these GW signals are too low

Bhattacharya, Miller, Ray (PRD, 2024)
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LISA as a DM Detector?
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These sun-like stellar binaries can capture DM particles and eventually form a binary BH system 
within the age of the universe.


Non-observation of continuous GW signals from these inspiralling stellar binaries can put an upper 
limit on their occurrence rate density .ℛ

DM parameters for which,

 


are ruled out.
Roccurrence|theo

(mχ, σχn, α) > ℛoccurrence|gw

Here  denotes the fraction of close stellar 
sun-like binaries.

α

Bhattacharya, Miller, Ray (PRD, 2024)



BNS vs Low Mass BBH
1) To distinguish low-mass BH mergers from Neutron Star mergers

LVK—arXiv:2111.03634

Possible Approaches


a) Tidal Deformability (Phys.Rev.D 107 (2023) 8, 083037)


b) Post Merger Signals (Matter effect for BNS systems may 
dampen the strain significantly)
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BNS vs Low Mass BBH
Preliminary Result
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Work in progress with Basudeb Dasgupta & Shasvath Kapadia
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BNS vs Low Mass BBH
Preliminary Result
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Concluding Remarks

• GW observations can shed light into particle dark matter theory and can 
even do better than the terrestrial experiments in future. 

• Given confirmed GW events like GW230529, GW190814, GW190425, 
low-mass BH scenario has become a viable explanation and hence needs 
to be explored. 

• Without an electromagnetic counterpart it is still hard to conclude whether 
two Neutron stars or low-mass BHs merged. We are trying to distinguish 
BNS mergers from low-mass BBH merger by analysing their postmerger 
signal.
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THANKS!

sulagna@theory.tifr.res.in

mailto:sulagna@theory.tifr.res.in


Slide credit: Basudeb Dasgupta
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1. Galactic Dark Matter particles accumulate in the  
Neutron Star and form a dense core

DM particles

2.The dark core collapses and forms 
a tiny black hole

3. Seed black hole eats up the host star and forms 
Transmuted black hole

4. Non detection of these low mass black hole mergers sets 
constraints on DM parameter space.

Credit: Caltech/MIT/LIGO Lab



17

TBH-TBH Merger Rate
Binary Neutron Star Merger Rate

RBNS = ∫
t0

t*

dRBNS

dtf
dtf ≈ (10 − 1700) Gpc−3 yr−1

 arXiv:2111.03634v4 (LVK)
 Taylor, Gair PRD.2012

In presence of DM parameters,  a fraction of  these BNS mergers will convert into 
TBH-TBH mergers and should be detected by GW detectors if, 

t0 > tf + τtransmutation
Dasgupta, Laha, Ray PRL. 2021+ This Work

Binary TBH Merger Rate

RBNS = ∫
df
dr

dr∫
t0

t*

dRBNS

dtf
dtf × Θ [t0 − tf − τtrans[mχ, σχn, ρext[r, t0]]]

Spatial distribution of BNSs DM parameters determine the fraction

t0 = 13.79 Gyr, tf = Binary formation time

https://arxiv.org/abs/2111.03634v4
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Capture Rate

C =
ρχ

mχ ∫
f(u)du

u
(u2 + v2

esc) × Nn × Min[σχn, σsat] × g1(u)

Flux

Stellar Targets Probability of getting  
Captured after  
single collision

Capture rate ∼ πR2
ρχ

mχ
Min[

σχn

σsat
,1] ≈ 1.4 × 1020 s−1

mχ = 105 GeV, σχn = 10−45 cm2, T = 2.1 × 106 K



TBH Formation
Thermalisation Radius, rth =

9kBTNS

4πGρNSmχ

so massive DM particles accumulate to the extreme core.
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TBH Formation
Thermalisation Radius, rth =

9kBTNS

4πGρNSmχ

so massive DM particles accumulate to the extreme core.

Seed BH Formation Condition
NBH

χ = max [Nself
χ , NCha

χ ]
Self  Gravitation Collapse criterion

NCha
χ−fermion = ( Mpl

mχ )
3

& NCha
χ−boson ≃ ( Mpl

mχ )
2 Mpl = 1.2 × 1019 GeV

Put, 1 GeV as neutron mass, neutron 
being fermion we get, 

MBH ∼ 1057 GeV ≃ 1 M⊙MBH = mχ NBH
χ = 9.0 × 10−17 M⊙ ( mχ

105 GeV )( NBH
χ

1036 )
If the seed BH is , efficient Hawking radiation leads to impossible transmutation< 10−19 M⊙



20

Priors are set from
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BNS and Chirp mass distributions
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Ozel & Freire, 2016
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mχ = 106 GeV
σχn = 10-46 cm2

mχ = 106 GeV
σχn = 10-47 cm2

RBNS = 103 Gpc-3 yr-1
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Progenitor Properties—Mass of the NS
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Progenitor Properties—Radius of the NS

mχ = 106 GeV
σχn = 10-46 cm2

mχ = 106 GeV
σχn = 10-47 cm2

RBNS = 103 Gpc-3 yr-1
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Progenitor Properties—Temperature of the NS
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