Predictions from scoto-seesaw with A; modular symmetry
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OUTLINE

Flavor structure: Hint for new physics

Modular symmetry as a predictive framework

Mass hierarchy of neutrinos shaped by the scoto-seesaw framework
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Flavour Structure of Standard Model

e In Standard Model (SM) there are three families of five fermions

QLi, Uk, di, ILis eri

Elementary
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Three Famllnes of Matter
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@ Flavor problem occurs when three generations have to live together
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Flavour Structure of Standard Model

@ This problem arises from Mass terms:
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Flavor Puzzle
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Flavour symmetry

@ This peculiar pattern consists flavor

puzzle.
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Flavor symmetry approach

There are various ways of doing this:

o Froggatt Nielsen Mechanism: Solves hierarchy problem but no explanation for
large mixing angles in lepton sector.

o Discrete Symmetry: Explains mixing pattern but symmetry breaking mechanism
is quite complicated.

In Modular symmetry approach flavor symmetry is realised in a non-linear way hence
making it special.
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Mass hierarchy of neutrinos shaped by the scoto-seesaw framework
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Model Framework

o We extend the SM symmetry by including As modular symmetry.
o Am2,, =2.5x 1073 eV2 and Am2, = 7.41 x 1075 V2.

sol —

@ origins of these two scales may stem from separate mechanisms : Scoto-seesaw.

Fermions Scalars Yukawa couplings
Fields i, 5 Ne, Ng, £ Heg 7 7 ox YW v y® y® O 00
SU(2), 2 1 1 1 1 2 2 2 1 = =
U(l)y -1/2 1 0 0 0 +1/2 1/2 -1/2 0 — - — - - -
As 1,1,17 1,1”,1 1 1 1 1 1 1 11 1 1 1 1/ 1
ki 0 0 4 4 5 0 8 8 5 4 4 8 8 8 10

Table: Particle content and modular Yukawa couplings of the model and their charges under
SU(2)L x U(1)y x A4, where k; is modular weight.
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Atmospheric Neutrino Mass Scale

@ Generating the atmospheric scale through type-l seesaw.

<H,> <H,>
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Figure: Feynman diagram at tree level

@ The Superpotential at tree level :

WT

v

ar (Yl“‘) LeHuNe, + YO L HyNe, + YO L, H N, + YOL, HUNR2>

+ k1 YO N Nr, + k2 Y Ni, N,
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@ Neutrino mass matrix:

3454) 0 (8)
Mp=1 0 Y1(,4) QT Vy, Mg = (ﬁl " 0(8)
Yl(,4) Yl(4) 0 K2 Y.

1//

(Mu)tree - _MDMEIME—I)_
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Solar Neutrino mass scale

The Superpotential at loop level:

v

WE = 8 (YOLenf + Vi Lunf + VP L) + ks YO + 2P Han
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Figure: Radiative neutrino mass generation
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Neutrino mass matrices at loop level:
8)\ 2 8) (8 8) (8
() (D) (v
2
(Mu)loop = /BEMf * <Y1(§)> (Yl(f) Yl(/s))
2
* * <Y1(,8))
Total neutrino mass:

M, = (MV)tree + (MV)IOOP
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Parameter space

Input Parameters | Range
Re[r] | +[0.0,0.5]
Im([z] | [0.8, 1.5]

ar | [107%,1072]

br | [107",2]
M, (GeV) | [1,10]x10"
M, (GeV) | [1,10]x10"
M; GeV) | 1, 10%]
m, (GeV) | 11, 400]
m, (GeV) | [1,400]
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Model Predictions
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Results from Neutrino phenomenology

Model favors normal ordering of neutrino mass
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Figure: Predictions of neutrino oscillation parameters from model
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Results from Neutrino phenomenology
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Figure: Predicted range for dcp
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Results from Neutrino phenomenology
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Figure: Neutrinoless double beta decay parameter and Majorana phases
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Lepton Flavor Violating Decay mode 1 — ey
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Figure: Expected branching ratio (BR) of i — ey with experimental upper limit as 4.2 x 10713
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Lepton Flavor Violating Decay mode 1 — 3e

‘g ‘p

Ca nt ‘s

1074 1
3 107 1.0
L1012 084
& 10-16 0.6
0.4
=20,
1o 02

e T L T L T A TV LA TV )
Mf[GeV]

Figure: Expected BR of u — 3e with experimental upper limit as 1 x 10712
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Conclusion

Modular symmetry is highly predictive in terms of mixing parameters in lepton
sector.

Neutrino mass is hierarchical by scoto-seesaw.

Our model predicts normal ordering for neutrino masses and
Miightest € (92, 200) x 1073 eV.

@ The neutrinoless double beta decay parameter |mee| € (3.15,6.66) x 1073 eV,
which is within the potential reach of upcoming experiments.

@ A4 modular symmetry within the scoto-seesaw framework leads to a highly
predictive model whose predictions can be tested in various experiments.
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Thankyou
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o — Tl —qv. |M0"|2 . (m55)2

B8
pp Effective Majorana mass

mgﬁ ZU -,

a larger < mege > increases the chances of detecting the decay.

Thus for odd weights, modular forms vanishes.
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I. g-Series: an example

The generating function, the infinite g-series

1
p(nq" = =x—F—1
;) [Tz (1—q%)
=14+q+2¢°+3¢>+5¢" +....
€ Z[[q]]
Leonhard Euler
is modular!
X 1 1
1 n q >
q p(n)q ——
)3 T G-d) 70
>
| 4
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|. g-Series: as modular forms

The Dedekind eta function:

is modular!

1. Modular Forms: the partition example

7?4 :H — C
24 _12 o4 (ar+b
7)=(cT+d
P40 = (er + d) 2t (0
=q[a-d*
k=1

is a modular form of weight 12.
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I1. Modular Forms: as in 2d conformal field theory and string theory

A string moving in time = a cylinder.

t= T/i = 1//\'/;T

R — P ~

partition function \ ,) oot

Z(T) - ’l‘l'«H(‘gﬁiT”

The partition functions are computed by identifying the initial and final time.
This turns the cylinder into a torus. As a result the string partition functions
are modular forms!

Modularity is very helpful in studying these physical theories.
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I, Modular Forms: as in 2d conformal field theory and string theory

String theory/CFT is very helpful to understand modularity.

Example 1: free chiral boson/Heisenberg algebra

1 — 7.1
Z(‘)CAJ/AHZ;)P(TCI —on(T)

ground state energy

number of way to increase the energy by n
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MODULAR SYMMETRY

T > The modular symmetry is a geometrical symmetry of the two-dimensional
torus, T2,

> The two-dimensional torus is constructed as division of the
. . . 2
two-dimensional Euclidean space R by a lattice A, 72 = .

» Instead of B2, one can use the one-dimensional complex plane.
)

> The lattice is spanned by two basis vectors, e; and e, as
myey + mae, ,where my and m; are integer.

» Thereratiois

€
== 16
’ €1 18 ei;

e
in the complex plane, represents the shape of the Torus 72 7
and parameter 7 is called the modulus.
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> The same lattice can be spanned by other basis vectors such as

HE N

where a, b, ¢, d are integer satisfying ad — bc = 1. Thatis the SL(2, 2).

D
V

A D

[N
V

If we actually fold ‘ ‘
g;% @
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» One interesting thing about finite modular groups " are: they are isomorphic to
discrete symmetry groups like I, ~ S3, T3 & Ay, Ty Sy, Ts 2 As, T ~ Ay, Th o~ At
etc.

» The modular group is defined as a group of 2 x 2 matrices having integer entries and
determinant 1.

r(/v):{<‘z 2) esl(2,2), (‘z Z):(é ;’) (modN)}.

» Therefore, the group () acts on the complex variable 7, varying in the upper-half
H =Im(r) > 0, as linear fractional transformation given by

_at+b

V(T) - mv

H:{TEC,Im(7)>0},y:L g ,

‘ b} esL22), (9

"Feruglio, Ferruccio, Are neutrino masses modular forms?, From My Vast Repertoire ...
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» The generators of modular group being

0 -1 11
S—L 0} andT—[o J. (19)
1
SZT—)—; T:T=>7+1. (20)

» Afunction F is said to be entire modular of weight k if it satisfies these below
conditions:
1. Fisanalytic in the upper plane H,H=(x + iy |y > 0;x,y € R).
2 F (288 )= (cr + 9 ().
3. The fourier series of F is given by the form of (called q expansion form).

Fr)=) aq =™ (21)
n=0
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Under the modular transformation, chiral superfields v; (i denotes flavors) with weight
-k transform as

i — (7 + d) Np()ijuy. (8)

Weight (k) dk A4 representations

2 3 3

4 5 3+1+1/

6 7 3+3+1

8 9 3+3+1+1'+1”
10 11 3+3+3+1 +1/

Table: A4 representations for different weight k.
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UV completion of SUSY scotogenic loop

Ws = uHuHqg + py Y, (6)7777 + MXY( Dox + A Y( "Hanx + A Y( YHun'x.

2

(M), ZfllehH+Z.7:2/mn,hH (9)
=1 =1

where F1; and F» are the loop function given by:

1 m2 M m2 M2
Fii = oy |UR(2 D i ( f ) (U2 )P i ( i )] ,
32m [ M2 77RI mWRI M2 o m727u m%”
(10)
1 m2 m% m2 m%
For = [Uy(2. 1) R o | =) - "0 in [ 2|, (11)
K 3272 mr%]/ — m%R mfR m%l — m%l m,%,

In the limit myz, >> mep
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Fu—F=

1 my n ( M,%) omy
2 2 _ 2 2 2 _ 2
32m Mf Mk Mk Mf my,
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