Contribution ID: 193

Type: Poster

FSI Uncertainties in DUNE-PRISM at various off-axis angles.

Neutrino experiments often utilize heavy nuclear targets to achieve high-statistics neutrino-nucleus interaction event rates. However, this approach introduces systematic uncertainties in oscillation parameters due to nuclear effects and cross-section uncertainties. A precise understanding of neutrino-nucleus interactions is thus crucial for accurately determining oscillation parameters. The Deep Underground Neutrino Experiment Precision Reaction-Independent Spectrum Measurement (DUNE-PRISM) is an advanced component of the DUNE experiment, designed to provide precise measurements of neutrino interactions and enhance the sensitivity to oscillation parameters. DUNE-PRISM employs a movable near detector that samples neutrino interactions at various off-axis angles, enabling the measurement of a wide range of neutrino energy spectra from the same beamline. This study investigates the uncertainty in neutrino energy reconstruction of quasielastic (QE) events at different off-axis positions using the calorimetric method. As we move away from the on-axis beam position, the uncertainties in the reconstruction increase in the QE region (~1 - 2 GeV), resulting in significant uncertainties at 41.81 and 52.26 milliradian off-axis beam positions. We quantify the uncertainties due to nuclear effects at these off-axis angles. Our findings indicate that final state interaction (FSI) effects create substantial uncertainties in the same energy region at these two off-axis angles. These results underscore the importance of accounting for FSI effects in neutrino energy reconstruction to enhance the precision of oscillation parameter measurements in future neutrino experiments.

Track type

Neutrino Physics

Author: PRADHAN, Ritesh Kumar
Co-authors: R, Lalnuntluanga (Indian Institute of Technology Hyderabad); GIRI, Anjan
Presenter: PRADHAN, Ritesh Kumar
Session Classification: Poster Session