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Quantization of electric charge

P. Dirac, in 1931, provided an elegant argument for the quantisation of electric charge in the
presence of a magnetic monopole.

eg=[fln—>e=[5n,n=123 -

Forn=1,gp = 68.5e)

‘g’ is the magnetic charge, ‘e’ is the ] .
electron charge, and g, represent the Dirac string
Dirac charge.

Magnetic monopoles are expected to be highly ionizing due to such high charge.
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Motivation (continued)

Restore symmetry between electricity and magnetism

o Maxwell, in 1873, ex-
plained the connection W/0 Monopole
between electricity and Gauss’s law V. D = 4mpe

| | | |

. | | | |
magnetism. | Gauss'slaw | V. BE=0 \ V- E = Ampm |
| | [ - |

| | | |

Laws With Monopole

o Existence of a mag- . 108 108 , 4
- g Faraday’s law —V x E = 198 =108 4n,

netic monopole would — T a —o0 3
Ampere’slaw | V x H = 2+ e vV xH 190 4 47 e

restore symmetry in
Maxwell’s equation.

Monopole in Grand Unified Theories

« 't Hooft and Polyakov, in 1974, discovered that monopoles are fundamental solutions in
GUTs.

e GUT monopoles are superheavy with mass 10" GeV/c?, not producable in particle
accelerators.
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NOvA (NuMI Off-Axis v. Appearance) Detectors

NOvVA primarily studies neutrino oscillation. NOvA Far Detector has remarkable capabilities
to search for monopoles and other subluminal exotic particles.
Two scintillator detectors
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Simulation of Magnetic Monopoles

Bethe-Ahlen formula for energy loss of
magnetic monopoles in matter:

| Magnetic charge || [ QED correction Jj[ Bloch correcnon ]
2
2m c /f Y

- We generate |sotrop|c monopoles
of mass 10'%GeV/c?, one unit of
Dirac charge and zero electric
charge.

- Monopoles are produced over a
beta range [10~4, 0.8].

- Monopoles are expected to pro-
duce very bright signal including
Cherenkov light above Cherenkov
threshold.
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dE/dx vs. true speed of simulated monopole.
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Event display of a simulated monopole overlaid with cosmics.
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We have developed a software trigger that continously searches for monopole-like

patterns in the data stream composed of mostly 150 kHz of cosmic rays.
NOVA Preliminary
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We have ~ 80% trigger efficiency for 5y,c >= 0.005
Lipsarani Panda 8




alysis Technique
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NOVA Future Sensitivity
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Future sensitivity for magnetic monopoles. The numbers expressed
in the unit of GeV denote the mass of the monopoles.
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. Due to its earth surface proximity and large surafece area, the NOVA far detector is
sensitive to an extensive range of magnetic monopole masses and velocities, which are
generally ruled out by underground experiments.

. We have a novel trigger algorithm at far detector to identify potential monopole like
activities and save it for further analysis.

. We have robust reconstruction algorithm and offline analysis techniques to get rid of
cosmics and have a good efficiency of final selection criteria.

. Stay tuned for the NOvA magnetic monopole result! .

“One would be surprised if Nature had made no use of it.” - P. Dirac(1931)
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THANK YOU FOR YOUR ATTENTION!

The NOvVA Collaboration
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Birk's Suppression

— Theory
— Geant4
T Geant4 with Birks
/
£ Birk's Suppression
g0 dE
g0 — % _ LO o
dx 1+Kg &
10?
MIP 2.2 x 10* GeVjcm
10 Kg =0.01155 —2—

107 10° 107 107 10° cm2MeV

Energy loss of monopoles

« The Geant4 simulation is consistent with the theoretical energy deposition, except for 3 > 0.3.

o It shows that the visible light yield from the simulated monopoles is constrained by Birks effect starting from 8 = 2 x 10~*
and is capped at 3 = 0.03.
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Reconstruction Performance

NOVA Preliminary

& The tracking performance is evaluated by tracker
purity. 0s

Tracker Purity

o Purity is number of monopole hits included in a track
divided by total hits included in the track. 02

o Purity equals unity for successfully reconstructed Puc
tracks.

o Validation using truth and reconstruction information 0 [ R AT
of the track. Nl .

o The top plot shows purity in the track and for fast .
monopoles it is very close to 1. g o

o The bottom plot shows the truth and reconstruc- Ly
tion values are very close to each other for fast
monopoles. Reco-MC validation
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Recent Work: Cherenkov Modelling

Monopoles are expected to produce (%)2 times as much Cherenkov light as a particle with electric charge ‘e’ and
and the same speed in a medium with refractive index ‘n’, given the relative permeability of the medium is unity.

o The scintillator index of refraction is around 1.47.
o Cherenkov threshold around 8 = 0.68.
o We expect nearly 10,000 times as much Cherenkov light as a muon.
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Data - Monopole Comparison
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Time gap between the first and the last hits > 350 ns. mean ADC > 850
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Energy loss of Monopoles

For monopoles with B > 0.1: ionisation is dominated and the energy loss is given by the
Bethe-Bloch formula adapted by Ahlen to magnetic monopoles :

47N g¢*  Imc’
de_tTNge CPY Kl 15

' -1 2
d I 2 22 Blg)] Mev g”'em ln(ﬁ’yz)—2ln(3%ﬂ)+a[xl—xj” ifX,<X<X,
¢
_ Zomm(=L)—1 i
Blgl}=0248, gl="2°. K lg)=0406, lg="2 <, y=—! 0 UG e,

0 if X<X, (non conductors)
8,.10°*if X<X, (conductors)

(1-p)

X:lc’gm(fgé’):logm(ﬁ) !

where [ is the mean excitation energy , d is the density correction factor k the QED correction , and B the Bloch correction

For monopoles with 0.01 < B < 0.1: neither ionisation nor atomic excitation is negligible and

the ene?y loss is not well defined and so polynomial interpolation is performed between [ =
0.01 and B = 0.1

For monopoles with B < 0.01: atomic excitation is dominated

P 1
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A=0.53 A(Bohr Radius)
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