Contribution ID: 76

Type: Parallel talk

Inflationary Gravitational Wave Spectral Shapes as test for Low-Scale Leptogenesis

Wednesday 16 October 2024 18:30 (15 minutes)

We study thermal and non-thermal resonant leptogenesis in a general setting where a heavy scalar ϕ decays to right-handed neutrinos (RHNs) whose further out-of-equilibrium decay generates the required lepton asymmetry. Domination of the energy budget of the Universe by the ϕ or the RHNs alters the evolution history of the primordial gravitational waves (PGW), of inflationary origin, which re-enter the horizon after inflation, modifying the spectral shape. The decays of ϕ and RHNs release entropy into the early Universe while nearly degenerate RHNs facilitate low and intermediate scale leptogenesis. We show that depending on the coupling y_R of ϕ to radiation species, RHNs can achieve thermal abundance before decaying, which gives rise to thermal leptogenesis. A characteristic damping of the GW spectrum resulting in two knee-like features or one knee-like feature would provide evidence for low-scale thermal and non-thermal leptogenesis respectively. The resulting novel features compatible with observed baryon asymmetry are detectable by future experiments like LISA and ET. By estimating signal-to-noise ratio (SNR) for upcoming GW experiments, we investigate the effect of the scalar mass M_{ϕ} and reheating temperature T_{ϕ} , which depends on the $\phi - N$ Yukawa couplings y_N .

Track type

Gravitational waves

Authors: GHOSHAL, Anish (University of Warsaw, Poland); Ms MALHOTRA, Lekhika (Indian Institute of Technology Bombay); YAJNIK, Urjit (IIT Bombay Mumbai India); AHMED BORBORUAH, Zafri (IIT Bombay)

Presenter: Ms MALHOTRA, Lekhika (Indian Institute of Technology Bombay)

Session Classification: Parallel - ASP & GW