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Introduction

Cosmic String as a 1D topological defect

» Toy example: £ = [0,®|? — 3(|®|* — n?)?
after global U(1) symmetry breaking

« VEV: (®) = ne’® (new stable minima)
« Which stable vacua (o) is picked depends Figure 1: GO‘C”g over a '°°£L”02:y5‘ca' space
. . . [ Cosmic strings 1506.04039 ]
on fluctuations = domain formation

« A« = 27n over spatial loop. Shrinking <
loop continuously can’t make it zero

strings
>

Discontinuity is encountered. Trapped old
vacua: cosmic string solution

Figure 2: Domains of different vacua
[ CTC Cambridge ]
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Motivation

Cosmological importance of topological defects and cosmic strings

+ Topological defects: directly connected to very early universe
+ Likely in several phase transition scenarios

* In particular, cosmic strings have trapped energy density;
don't contradict basic cosmological observations

Cosmic string characteristics:
« Abelian strings have finite mass per unit length: Gu ~ 1076
+ Signatures like gravitational waves, lensing, synchrotron radiation etc.

+ role in large-scale structure formation, primordial magnetic field origin, evolution

’ Cosmic string wakes play a critical role ‘
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Cosmic String Wake formation

Sheet-like structures behind cosmic strings

+ Cosmic string metric is locally flat but globally conical (deficit angle 0 = 87Gpu)
* Gives background matter/plasma a kinematic boost Av = 4nGuvsy,

Figure 4: Overdense wake structure in string's rest frame
[Cosmic Strings and Other Topological Defects, A. Vilenkin]

Figure 3: Globally conical, locally flat metric
[“Cosmic Strings and Large Scale Structures”, CTC Cambridge]
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Magnetized Wakes

Wakes with magnetic field in the plasma

+ Magnetic fields can be generated in cosmic string wakes
« The background plasma and magnetic field interact and evolve with the wake
+ Possibility of magnetic reconnections = new signatures

[S. Sau and S. Sanyal, Eur. Phys. J. C, 80(2), February 2020]
[D. Kumar and S. Sanyal, ApJ 944(2):183, feb 2023.]

These motivate us to explore

+ Magnetohydrodynamic simulations of wakes in magnetized plasma
+ Identifying the core features of the field evolution
+ Characteristic scales, relevance to magnetic reconnections?
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Ideal Magnetohydrodynamics (MHD)

Framework for numerical simulation

Large-scale matter flow around string is collisional; astrophysical/early universe plasma

ish |gh Iy conductive [A. Beresnyak, Astrophys. J., 804(2):121, 2015]

+ So, we use Ideal MHD: inviscid and infinitely conductive fluid

dp B 0B
E—l—v.(pv)—(), 57 =V x(vxB),

p(?;t’ + (V.V)v) =-V <P+ BQ) + (B.V)B : (1)

8 47

+ Plus an equation of state (polytropic: P = Kp? ,v = 5/3)
+ Vorticity w = V x v depends on velocity and magnetic fields
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Numerical Simulation
Package and Initial setup
+ Software package: OpenMHD, a finite-volume Fortran code for MHD
+ Simulations confined to 2D discretized xy plane; Stepsize/lengthscale Al = 1 unit.

+ Open boundary conditions. Turbulence not generated due to boundary
conditions or by vorticity at different lengthscales

Parameters
plasma-3 = 2P/B? |

Scales
Typical/initial values of field variables:

p0, Bo, Vo, Po Mach number M = vy/c; ,
Sound speed ¢ = YPy/po Cosmic string deficit angle 20
time scale length scale
x —2 >
M
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Simulating the Wake

+ Simulation happens in string'’s rest frame. Av | ~g
, . . —

+ To the string's right plasma has constant flow v = —vyx o

+ To the string's left, perturbation is given such that total ® i
velocity is unchanged \_L—

+ If wake angle = 20, we have Av ] —t
VJ/’ = 6Vy = vpsind, V;C = Vo cosf Figure 5: Wake simulation

* This velocity discontinuity implies local vorticity geometry and setup

[P. P. Avelino and E. P. S. Shellard, Phys. Rev. D, 51:5946-5949, May 1995.]
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Hydrodynamic wake simulation

Visualizing hydrodynamic wake using streamlines

Streamlines at t=50.012589
4 , =
60-'"" ) ",,' Ml 1
Tyl I e r

150 200

250 300

X

350 400

Figure 6: String at (x;, 0). Vortices are formed due to evolution of the initial velocity perturbations and vorticity flow. No
magnetic field is taken. Total vorticity is conserved. M = 10,0 = 15°
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Wakes with magnetic field

+ MHD wake simulations with magnetic field turned on in xy plane

+ Magnitude fixed by 3, taken 10. Higher f3s give similar results. Flow dynamics not
dominated by magnetic field

+ Total vorticity is conserved.
+ Non-uniform, sheared fields; more likely to occur in wakes

+ Different field configurations spatially varying over a range of lengthscales are
used for simulations
(As fields in wake can be generated at varied lengthscales)
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Amplification of B field

Sheared perturbation along the flow

Sheared Magnetic Field Total field energy evolution
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Figure 7: B = Boi e~ 1Vl sheared
magnetic field with lengthscale Figure 8: Total magnetic field energy Figure 9: Peak value of magnetic

lo~ 1/ increasing with time field increasing with time

Magnetic field amplifies for all @1 and geometries sheared along the flow. Results
shown for vy = 0.01




Reasons for amplification

+ Alfven’s theorem, valid in ideal MHD:
Magnetic field lines are frozen in the fluid

+ So, fluid overdensity and deformation in the wake causes B field amplification
+ Skew deformations of fluid affect both B field direction and strength

+ Analysis by deformation tensor of fluid shows magnetic field increases with
density
B p*

+ So final field strength is more than initial field strength in the wake

[EmmaJ. King and Peter Coles, MNRAS 365(4):1288-1294, February 2006.]
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Amplification with perpendicular shear

Sheared magnetic perturbation perpendicular to the flow
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Figure 10: B = Boje—2lv—xl
; ) f ) - Figure 12: Peak value of magnetic
perpendicular sheared field with Figure 11: Total magnetic field energy g g

lengthscale Ip ~ 1/ag increasing with time field increasing with time

Amplification for as < 1 (large lengthscales). Results shown for ay = 0.01.




Decay with perpendicular shear

Sheared magnetic perturbation perpendicular to the flow

Total field energy evolution
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Decay of magnetic field for acs = 1 (smaller lengthscale). Results shown for as = 1.




Reasons for decay

Breakdown of Alfven’s theorem

+ Alfven theorem implies magnetic field lines flow with the velocity of the fluid
+ Atindividual charged particle level: guiding center approximation is used
+ Valid as long as the gradient drift is small

mcv

vy o Te re<<lp, |(r¢e=— I:B-fieldlengthscale (2)
lo qB

+ Guiding center approx. breaks down when ry ~ ly. Magnetic field lines don't flow with the plasma.
+ In the simulation this is verified by the values of r, and Iy

+ Magnetic reconnection requires similar breakdown of Alfven’s theorem

[Gregory L. Eyink, Hussein Aluie, Physica D, Volume 223, Issue 1, 2006]
[Bhimsen K. Shivamoggi, Physics Reports, Volume 127, Issue 2, 1985]
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Summary

« Amplification and decay of magnetic fields in cosmic string wakes is studied in
absence of dynamo mechanism

+ Found strong dependence on magnetic field geometry and lengthscales in the
field's evolution.

+ Decay of magnetic field occurs for lengthscales below gyroradius ry associated
with the field and plasma particle

+ Alfven’s theorem breakdown near r, suggests a scale for magnetic reconnections
+ Resistive MHD, 3D simulations etc. are possible future directions
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