The dynamics and detection possibility of a pseudo FIMP in presence of a thermal Dark Matter

Dipankar Pradhan

IIT Guwahati, India

In collaboration with Subhaditya Bhattacharya, Lipika Kolay, Jayita Lahiri and Jahan Thakkar

Dark Matter

Galaxy Rotation Curve

Bullet Cluster

Summary of DM evidence

$$\Omega_{\rm DM} h^2 = 0.1200 \pm 0.0012$$

- What we know about DM?
- What we don't know about DM?

Multicomponent DM

• Why Multicomponent is unanswered: Because single component is a simplification.

We observe a new DM candidate also, called pseudo-FIMP (pFIMP), only possible in a multi-component framework, and this is a new outcome.

- The interaction between DM components play a crucial role in two-component DM case.
- Focus: two component DM involving pFIMP together with WIMP and SIMP.

What is pseudo FIMP?

Dynamics of pseudo-FIMP (pFIMP) in presence of a thermal DM

Published in: Phys. Rev. D 108, L111702.

Detection possibility of pFIMP in presence of a WIMP

Published in: Phys. Rev. D 109, 095031.

Two Dark Matters: DM₁ and DM₂

Equilibrated with thermal bath having weak interaction with SM bath.

Have a feeble interaction with SM particle but might have sizeable interaction with another DM

Coupled Boltzmann Equation:
$$\frac{dY_1}{dx} = -\frac{\mathbf{s}}{x H(x)} \left[\left(Y_1^2 - Y_1^{\text{eq}^2} \right) \langle \sigma v \rangle_{1 \text{ 1} \to \text{SM SM}} \right] + \left(Y_1^2 - Y_1^{\text{eq}^2} \frac{Y_2^2}{Y_2^{\text{eq}^2}} \right) \langle \sigma v \rangle_{1 \text{ 1} \to 2 \text{ 2}} \right]$$

annihilation <

$$\frac{dY_2}{dx} = \frac{2 \text{ s}}{x H(x)} \left[\frac{1}{s} \left(Y_{\text{SM}}^{\text{eq}} - Y_{\text{SM}}^{\text{eq}} \frac{Y_2^2}{Y_2^{\text{eq}^2}} \right) \langle \Gamma \rangle_{\text{SM} \to 2 \ 2} + \left(Y_{\text{SM}}^{\text{eq}^2} - Y_{\text{SM}}^{\text{eq}^2} \frac{Y_2^2}{Y_2^{\text{eq}^2}} \right) \langle \sigma v \rangle_{\text{SM SM} \to 2 \ 2} + \left(Y_1^2 - Y_1^{\text{eq}^2} \frac{Y_2^2}{Y_2^{\text{eq}^2}} \right) \langle \sigma v \rangle_{1 \ 1 \to 2 \ 2} \right]$$

production

Mass hierarchy:

 $_{4}$ (I) $m_{1} > m_{2}$ and (II) $m_{1} < m_{2}$

Phys. Rev. D 108, L111702

 μ_{12}/T

Phys. Rev. D 108, L111702

10

100

0.01

0.10

 μ_{12}/T

Phys. Rev. D 108, L111702

 μ_{12}/T

 μ_{12}/T

pFIMP dynamics in presence of a scalar WIMP

Simplest example: Two Component Real Scalar DM ϕ_1 and ϕ_2 are stable under $\mathbb{Z}_2 \otimes \mathbb{Z}_2'$ symmetry.

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{2} \partial_{\mu} \phi_{1} \partial^{\mu} \phi_{1} - \frac{1}{2} \mu_{\phi_{1}}^{2} \phi_{1}^{2} - \frac{1}{4!} \lambda_{\phi_{1}} \phi_{1}^{4} - \frac{1}{2} \lambda_{1H} H^{\dagger} H \phi_{1}^{2} + \frac{1}{2} \partial_{\mu} \phi_{2} \partial^{\mu} \phi_{2} - \frac{1}{2} \mu_{\phi_{2}}^{2} \phi_{2}^{2} - \frac{1}{4!} \lambda_{\phi_{2}} \phi_{2}^{4} - \frac{1}{2} \lambda_{2H} H^{\dagger} H \phi_{2}^{2} - \frac{1}{4} \lambda_{12} \phi_{1}^{2} \phi_{2}^{2}.$$

- WIMP gets large relic-allowed parameter space due to opening up a new annihilation channel to pFIMP, and both contribute to the total observed DM Relic abundance.
- Although this pFIMP has a very feeble connection with SM, but still has (In-)direct detection search possibility via the WIMP loop. The Higgs resonance region is allowed by all observational constraints.

Possible pFIMP-SM interactions via WIMP loop

WIMP-pFIMP stabilising symmetry: $\mathbb{Z}_2 \otimes \mathbb{Z}_2'$

- Grey lines corresponds to SM particles.
- Red lines corresponds to WIMP.
- Black lines corresponds to pFIMP.
- Tilde lines corresponds to heavy bath particle odd under both symmetry.

Scalar pFIMP and Fermion WIMP

$$\mathcal{L}_{\text{Scalar}} = \frac{1}{2} \left[\partial_{\mu} \phi \right]^{2} - \frac{1}{2} m_{\phi}^{2} \phi^{2} - \frac{1}{4!} \lambda_{\phi} \phi^{3} - \frac{1}{2} \lambda_{\phi H} \phi^{2} H^{4} H^{4} \right]$$

$$\mathcal{L}_{\text{VF}} = \overline{\psi} \left[i \gamma^{\mu} \left(\partial_{\mu} + i g \frac{\sigma^{a}}{2} W_{\mu}^{a} + i g' \frac{Y}{2} B_{\mu} \right) - m_{\psi} \right] \psi$$

$$+ \sum_{\alpha=1,2} \overline{\psi}_{\alpha} \left(i \gamma^{\mu} \partial_{\mu} - m_{\psi_{\alpha}} \right) \psi_{\alpha} - (Y_{1} \overline{\psi} \widetilde{H} \psi_{1} + Y_{2} \overline{\psi}_{2} \psi_{1} \phi + \text{h.c.})$$

- pFIMP dynamics and detection possibilities have been discussed.
- We studied both DM mass hierarchy regimes.
- The most detectable regime in future experiments is above 100 GeV.
- Collider search prospect of pFIMP might be possible via thermal WIMP loop.

WIMP-pFIMP conversion

pFIMP direct detection

SIMP-pFIMP phenomenology focusing low mass regime

Ongoing Work

pFIMP-SIMP Model

$$\frac{dY_{s}}{dx} = \frac{1}{x} \frac{1}{x} \left[\frac{1}{x} \left(Y_{h}^{cq} - Y_{h}^{eq^{2}} \right) \left(\nabla V_{h \to \phi} + \left(Y_{SM}^{eq^{2}} - Y_{SM}^{eq^{2}} \right) \left(\nabla V_{NM}^{eq^{2}} \right) \left(\nabla V_{NM}^{eq^{2}} - Y_{SM}^{eq^{2}} \right) \right] \frac{10^{-18}}{\sqrt{10^{-19}}} \frac{10^{-19}}{\sqrt{10^{-19}}} \frac{10^{-19}}{\sqrt{1$$

Ongoing Work

Motivation

- Two DM components are naturally stable with two distinct discrete symmetries.
- However, the heavier dark sector particle can also be made kinematically stable under one symmetry and lightest one naturally stable.
- The DM, which has feeble interaction with the visible sector,
 would always be a pFIMP.
- ullet We study such possibilities under $\mathbb{Z}_{\mathbf{N}}$ symmetry.

Two complex scalar DM under \mathbb{Z}_3 symmetry

A generic two – component DM scenario under a discrete symmetry, $\mathbb{Z}_3: \chi_1 \xrightarrow{\mathbb{Z}_3} \omega_3^{q_1} \chi_1 \quad \chi_2 \xrightarrow{\mathbb{Z}_3} \omega_3^{q_2} \chi_2$

Scenarios	Interaction terms of two DMs: χ_1 and χ_2 under \mathbb{Z}_3 symmetry	
$q_1=1,\ q_2=2\ { m or}\ q_1=2,\ q_2=1$		
A	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2} H^{\dagger} H, \chi_{1}^{2} \chi_{2}^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}^{*}, \chi_{1}^{2} \chi_{2}^{*}, \chi_{1} \chi_{2} (\chi_{1} ^{2} + \chi_{2} ^{2})$	
В	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2} H^{\dagger} H, \chi_{1}^{2} \chi_{2}^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}^{*}, \chi_{1}^{2} \chi_{2}^{*}, \chi_{1} \chi_{2} (\chi_{1} ^{2} + \chi_{2} ^{2})$	
C	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2} H^{\dagger} H, \chi_{1}^{2} \chi_{2}^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}^{*}, \chi_{1}^{2} \chi_{2}^{*}, \chi_{1} \chi_{2} (\chi_{1} ^{2} + \chi_{2} ^{2})$	
$\mathbf{q_1}=\mathbf{q_2}=1,\;2$		
D	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2}^{*} H^{\dagger} H, (\chi_{1} \chi_{2}^{*})^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}, \chi_{1}^{2} \chi_{2}, \chi_{1} \chi_{2}^{*} (\chi_{1} ^{2} + \chi_{2} ^{2})$	
E	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2}^{*} H^{\dagger} H, (\chi_{1} \chi_{2}^{*})^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}, \chi_{1}^{2} \chi_{2}, \chi_{1} \chi_{2}^{*} (\chi_{1} ^{2} + \chi_{2} ^{2})$	
F	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1}^{2} \chi_{2}^{*} H^{\dagger} H, (\chi_{1} \chi_{2}^{*})^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}, \chi_{1}^{2} \chi_{2}, \chi_{1}^{2} \chi_{2}^{*} (\chi_{1} ^{2} + \chi_{2} ^{2})$	

Two complex scalar DM under \mathbb{Z}_3 symmetry

Tree and 1 – loop and 2 – loop level decays of χ_2 (m_{χ_2} > m_{χ_1}):

Two complex scalar DM under \mathbb{Z}_3 symmetry

A generic two – component DM scenario under discrete symmetry, \mathbb{Z}_3 :

Scenarios	Interaction terms of two DMs: χ_1 and χ_2 under \mathbb{Z}_3 symmetry	
$q_1=1,\ q_2=2\ { m or}\ q_1=2,\ q_2=1$		
	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2} H^{\dagger} H, \chi_{1}^{2} \chi_{2}^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}^{*}, \chi_{1}^{2} \chi_{2}^{*}, \chi_{1} \chi_{2} (\chi_{1} ^{2} + \chi_{2} ^{2})$	
В	$ \chi_{1} ^{2} H^{\dagger} H, \chi_{2} ^{2} H^{\dagger} H, \chi_{1}^{3}, \chi_{2}^{3}, \chi_{1} ^{4}, \chi_{2} ^{4}, \chi_{1} \chi_{2} H^{\dagger} H, \chi_{1}^{2} \chi_{2}^{2}, \chi_{1} \chi_{2} ^{2}, \chi_{2}^{2} \chi_{1}^{*}, \chi_{1}^{2} \chi_{2}^{*}, \chi_{1} \chi_{2} (\chi_{1} ^{2} + \chi_{2} ^{2})$	

- After imposing the stabilising conditions, $\tau_{\chi_2} > \tau_{\rm univ}$ by the minimal choice of couplings associated with red color terms, χ_2 becomes a long-lived DM with a stable lightest DM χ_1 , and both would be contributed in DM relic.
- If we ignore those red color terms, which are very tiny, these scenarios are reduced to a scenario where both DMs are absolutely stable only under mass kinematics.
 - \bullet A, D absence of red terms $\mathbb{Z}_3 \otimes \mathbb{Z}_3'$.
 - \bullet B, C absence of red terms \mathbb{Z}_6 ($q_1 = 1$, $q_2 = 2$) and ($q_1 = 2$, $q_2 = 1$).
 - E, F absence of red terms \mathbb{Z}_6 ($q_1 = 1$, $q_2 = 4$) and ($q_1 = 4$, $q_2 = 1$).

13

Scenario A

- The heavier component stabilisation needs tiny couplings associated with interaction terms $(\chi_1\chi_2H^{\dagger}H, \chi_1^2\chi_2^2, \chi_2^2\chi_1^*, \chi_1^2\chi_2^*, \chi_1\chi_2|\chi_1|^2, \chi_1\chi_2|\chi_2|^2)$, giving one LLP and one stable DM.
- Depending on the value of λ_{2H} , we get two scenarios:
 - WIMP WIMP (λ_{2H} ~ weak scale).
 - WIMP pFIMP (λ_{2H} is feeble).

Results

Summary

- Different possibilities of DM, like WIMP, SIMP or FIMP, account for correct relic density via freeze-out or freeze-in. Having more than one DM component greatly enhances the phenomenological possibility via DM-DM interaction.
- A new kind of DM, pseudo-FIMP (pFIMP), can arise in two-component DM scenarios having a thermal DM, providing loop-induced search prospects.
- The pFIMP could also be achievable in the sub-GeV regime in the presence of SIMP.
- We can obtain two dark matter candidates with a single discrete symmetry: one is a long-lived particle (LLP), while the other remains a stable dark matter candidate.

1 Mank