MPI2017, Shimla, December 2017

Production of two pairs of J/ψ mesons and simultaneous production of *D* and *B* mesons in the context of double parton scattering

Antoni Szczurek 1,2

¹Institute of Nuclear Physics PAN Kraków ²University of Rzeszów

Introduction

- ► J/ψ the lightest quarkonium. Relatively large cross section.
- J/ψ a good probe of quark-gluon plasma.
- Long-standing problems in microscopic description of J/ψ distributions.
 Calculated cross sections much smaller than experimental ones.
- Color octet model was a "solution"
 But it was (is) rather fitted to the data.
- Higher-order collinear or k_t-factorization non-relativistic pQCD lead to larger cross sections.
- There is less and less room for color octet contributions.
- Do we need color-octet contributions ? Not clear in my opinion.

Single J/ψ production

We have done calculations of single J/ψ production within k_t -factorization and NRpQCD approach including:

- direct $(J/\psi g)$ production
- feed-down from χ_c mesons

No fitting parameters (!)

A reasonable description of the midrapidity LHC data is possible.

Not much room for color octet contribution.

(Will not be discussed here.)

Here we concentrate on double J/ψ production.

Mechanisms included for $J/\psi J/\psi$

Both single and double parton scattering contributions

Mechanisms included for $J/\psi J/\psi$

- 1. Leading order box contribution in k_t -factorization approach.
- 2. Double parton scattering mechanism (data driven).
- 3. Two-gluon exchange (collinear factorization).
- 4. Production of $\chi_c(J_1)\chi_c(J_2)$ and feed-down.

Our previous works on J/ψ

Our previous works on J/ψ :

- A. Cisek, W. Schäfer and A. Szczurek, "Exclusive photoproduction of charmonia in $\gamma p \rightarrow Vp$ and $pp \rightarrow pVp$ reactions within k_t -factorization approach",
- JHEP 1504 (2015) 159. Phys. Rev. D93 (2016) 074014.
- A. Cisek, W. Schäfer and A. S., "Semiexclusive production of J/ψ mesons in proton-proton collisions", arXiv:1611.08210, in Phys.Lett.B.
- A. Cisek and A. S., a paper in preparation
- A. Cisek, W. Schäfer and A.S., a paper in preparation

S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schäfer,

"Interparticle correlations in the production of J/ψ pairs in proton-proton collisions", Phys. Rev. **D87** (2013) 034035.

$$pp \rightarrow J/\psi J/\psi$$

New data become available recently:

• Tevatron D0 data for $\sqrt{s} = 1.96$ TeV (small σ_{eff} obtained)

• LHCb data (
$$\sqrt{s} = 7 \text{ TeV}$$
)

- CMS data for $\sqrt{s} = 8$ TeV (running cuts, difficult to interprete)
- ATLAS data for $\sqrt{s} = 8$ TeV (will be discussed here)

 $pp \rightarrow J/\psi J/\psi$, LHCb

S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schäfer, "Interparticle correlations in the production of J/ψ pairs in proton-proton collisions", Phys. Rev. **D87** (2013) 034035.

 $pp \rightarrow J/\psi J/\psi$, box

20 diagrams, box ($O(\alpha_s^4)$), $\sigma \propto |R(0)|^4$.

 $pp \rightarrow J/\psi J/\psi$, box

only some are shown

$pp \rightarrow J/\psi J/\psi$, double parton scattering

DPS ($O(\alpha_s^6)$) But enhanced by higher powers of gluon distributions $g_1^2 g_2^2$ at high energy. $pp \rightarrow J/\psi J/\psi$, box contributions

In k_t -factorization approach:

$$\frac{d\sigma(pp \to J/\psi J/\psi X)}{dy_{V_1} dy_{V_2} d^2 \rho_{V_{1,t}} d^2 \rho_{V_{2,t}}} = \frac{1}{16\pi^2 \hat{s}^2} \int \frac{d^2 q_{1t}}{\pi} \frac{d^2 q_{2t}}{\pi} \overline{|\mathcal{M}_{g^*g^* \to J/\psi J/\psi}^{\text{off}-\text{shell}}|^2} \times \delta^2 \left(\vec{q}_{1t} + \vec{q}_{2t} - \vec{p}_{V_{1,t}} - \vec{p}_{V_{2,t}}\right) \mathcal{F}_g(\mathbf{x}_1, \mathbf{q}_{1t}^2, \mu_F^2) \mathcal{F}_g(\mathbf{x}_2, \mathbf{q}_{2t}^2, \mu_F^2) .$$
(1)

The corresponding matrix elements squared for the $gg \rightarrow J/\psi J/\psi$ (box) is

$$|\mathcal{M}_{gg \to J/\psi J/\psi}|^2 \propto \alpha_s^4 |R(0)|^4 .$$
⁽²⁾

They were calculated e.g. by our collaborator S. Baranov.

16 diagrams, box $(O(\alpha_s^6))$ (high-order) from $\gamma\gamma \rightarrow J/\psi J/\psi$ to $gg \rightarrow J/\psi J/\psi$ first included in: S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schäfer, "Interparticle correlations in the production of J/ψ pairs in proton proton colligions," Data Data (2012) 024025 $pp \rightarrow J/\psi J/\psi$, 2g exchange (NNLO)

and many more ...

 $pp \rightarrow J/\psi J/\psi$, box contributions

We have made calculations both in collinear and k_t -factorization approaches. In collinear approach:

$$\frac{d\sigma(pp \to J/\psi J/\psi}{dy_{V_1} dy_{V_2} d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} \overline{|\mathcal{M}_{gg \to J/\psi J/\psi}^{on-shell}|^2} \times \frac{g(x_1, \mu_F^2)g(x_2, \mu_F^2)}{g(x_2, \mu_F^2)}.$$
(3)

In our calculations we will use MSTW08 gluon distributions.

2g exchange mechanism

In high-energy approximation the elementary 2g-exchange process amplitude

$$\mathcal{M} \propto \hat{s} \int d^2 \kappa \frac{\Phi_1^{nr}(\kappa_1) \Phi_2^{nr}(\kappa_2)}{(\kappa_1^2 + m_g^2)(\kappa_2^2 + m_g^2)} \,. \tag{4}$$

where nonrelativistic $g \to J/\psi$ impact factors: $\Phi_k^{nr} \propto \sqrt{\Gamma_{V \to e^+e^-}} \alpha_s$ (k=1,2). We take $m_g = 0$ (possible enhancement, but not in this corner of PS) $\Phi_{\gamma \to V}^{nr}$ were calculated by Ginzburg,Panfil,Serbo 1987. It was generalized to $g \to J/\psi$ transitions.

 $O(\alpha_s^6)$ contribution !!! (so far calculations upto $O(\alpha_s^5)$ in NLO) (Lansberg, Shao 2015)

experiment driven DPS

$$\frac{d\sigma(pp \to J/\psi g)}{dy_{J/\psi}dy_g d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} \overline{|\mathcal{M}_{gg \to J/\psi g}^{eff}|^2} \times g(x_1, \mu_F^2)g(x_2, \mu_F^2).$$
(5)

Auxiliary final state "gluon" (could be massive). We take parametrization by Kom-Kulesza-Stirling 2011 with MSTW08 PDF.

Experiment driven DPS

single parton scattering \rightarrow double parton scattering We assume factorized Ansatz.

$$\frac{d\sigma}{dy_1 d^2 p_{1t} dy_2 d^2 p_{2t}} == \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma}{dy_1 d^2 p_{1t}} \cdot \frac{d\sigma}{dy_2 d^2 p_{2t}}$$
(6)

single J/ψ distributions are parametrized. σ_{eff} in principle a free parameter responsible for the overlap of partonic densities of colliding protons. $\sigma_{eff} = 15$ mb is world average for different reactions. Much smaller value was obtained for double quarkonia production???

$pp \rightarrow \chi_c \chi_c$

Figure: A diagrammatic representation of the leading order mechanisms for $pp \rightarrow \chi_c(J_1)\chi_c(J_2) \rightarrow (J/\psi + \gamma)(J/\psi + \gamma)$ reaction.

Figure: $g^*g^* \to \chi_c(\lambda)$ vertex being a building block of corresponding $g^*g^* \to \chi_c(J_1)\chi_c(J_2)$.

$$egin{array}{rcl} q_1^\mu T_{\mu
u}(J,J_z) &=& 0 \;, \ q_2^
u T_{\mu
u}(J,J_z) &=& 0 \;. \end{array}$$

 $g^*g^* o \chi_c$ vertex

$$V_{\mu\nu}^{ab}(J, J_{z}; q_{1}, q_{2}) = 4\pi\alpha_{S} \frac{\operatorname{Tr}[t^{a}t^{b}]}{\sqrt{N_{c}}} \sqrt{\frac{2}{M}} \sum_{S_{z}, L_{z}} \int \frac{d^{4}k}{(2\pi)^{3}} \delta(k^{0} - \frac{\vec{k}^{2}}{M}) \Psi_{1, L_{z}}(\vec{k}) \times \langle 1, S_{z}; 1, L_{z} || |J, J_{z} \rangle \cdot \operatorname{Tr}[A_{\mu\nu} \Pi_{1, S_{z}}],$$

NRQCD: expand in the relative momentum k.

 $g^*g^* o \chi_c$ vertex

The $g^*g^*
ightarrow Q\bar{Q}$ amplitude is (up to factors)

$$A_{\mu
u} = \gamma_{\mu} rac{\hat{p}_{Q} - \hat{q}_{1} + m_{Q}}{(p_{Q} - q_{1})^{2} - m_{Q}^{2}} \gamma_{
u} + \gamma_{
u} rac{\hat{p}_{Q} - \hat{q}_{2} + m_{Q}}{(p_{Q} - q_{2})^{2} - m_{Q}^{2}} \gamma_{\mu}$$

Projector onto spin-triplet:

$$\Pi_{S=1,S_z} = \frac{1}{2\sqrt{2}m_Q} \left(\frac{\hat{P}}{2} - \hat{k} - m_Q\right) \hat{\epsilon}(S_z) \left(\frac{\hat{P}}{2} + \hat{k} + m_Q\right).$$

NRQCD: expand in the relative momentum k.

Elementary amplitudes

Figure: A diagrammatic representation of the generic $g^*g^* \rightarrow \chi_c(J_1)\chi_c(J_2)$ *t*-channel (left) and *u*-channel (right) amplitudes.

Elementary amplitudes

Now we wish to discuss the elementary $g^*g^* \rightarrow \chi_c(J_1)\chi_c(J_2)$ amplitudes $\mathcal{M}_{\mu\nu}(J_1J_{1z}, J_2J_{2z})$.

The generic amplitude for the $gg \rightarrow \chi_c(J_1)\chi_c(J_2)$ subprocess can be written as:

$$\mathcal{M}(\lambda_{1},\lambda_{2}) = \epsilon_{1}^{\alpha} \epsilon_{2}^{\beta} [V_{\alpha\mu}^{\chi_{c}(J_{1}),t}(\lambda_{1}...) \frac{g^{\mu\nu}}{\hat{t}} V_{\beta\nu}^{\chi_{c}(J_{2}),t}(\lambda_{2}...) + V_{\alpha\mu}^{\chi_{c}(J_{2}),u}(\lambda_{2}...) \frac{g^{\mu\nu}}{\hat{u}} V_{\beta\nu}^{\chi_{c}(J_{1}),u}(\lambda_{1}...)].$$
(7)

Elementary amplitudes, gauge invariance

Because of properties of our $g^*g^* \rightarrow \chi_c(1)$ vertices the tensorial amplitudes for the $g^*g^* \rightarrow \chi_c(1)\chi_c(1)$ fulfill the following relations:

$$q_{1}^{\alpha} \mathcal{M}_{\alpha\beta\gamma\delta} = 0,$$

$$q_{2}^{\beta} \mathcal{M}_{\alpha\beta\gamma\delta} = 0,$$

$$p_{1}^{\gamma} \mathcal{M}_{\alpha\beta\gamma\delta} = 0,$$

$$p_{2}^{\delta} \mathcal{M}_{\alpha\beta\gamma\delta} = 0.$$
(8)

or

$$\begin{array}{rcl} \mathcal{M}_{\mu\nu}(J_1J_{1z},J_2J_{2z})q_1^{\mu} &=& 0 \;, \\ \mathcal{M}_{\mu\nu}(J_1J_{2z},J_2J_{2z})q_2^{\nu} &=& 0 \;. \end{array}$$

Cross section

From the general rules of nonrelativistic pQCD:

$$\sigma_{\rho\rho\to\chi_c\chi_c}\propto \alpha_s^4 |R'_P(0)|^4 \tag{9}$$

The cross section sensitive to the choice of renormalization scale and the wave function.

$$\Gamma(\chi_c(0^+) \to \gamma\gamma) = \frac{27 e_c^4 \alpha_{em}^2}{(m_{\chi_c(0)}/2)^4} |R'_P(0)|^2 .$$
 (10)

Use PDG data.

Table: Combined decay branching fractions for different combinations of intermediate $\chi_c(J_1)\chi_c(J_2)$ dimeson states.

	$\chi_{c}(0)$	$\chi_{c}(1)$	$\chi_{c}(2)$
$\chi_{c}(0)$	1.44 10 ⁻⁴	0.0035	0.002
$\chi_{c}(1)$	0.0035	0.12	0.07
χ _c (2)	0.002	0.07	0.035

The k_t -factorization approach the corresponding differential cross section can be written as:

$$\frac{d\sigma(pp \to \chi_c \chi_c X)}{dy_{M_1} dy_{M_2} d^2 p_{M_1,t} d^2 p_{M_2,t}} = \frac{1}{16\pi^2 \hat{s}^2} \int \frac{d^2 q_{1t}}{\pi} \frac{d^2 q_{2t}}{\pi} \overline{|\mathcal{M}_{g^*g^* \to \chi_c \chi_c}^{off-shell}|^2} \\ \times \delta^2 \left(\vec{q}_{1t} + \vec{q}_{2t} - \vec{p}_{V_1,t} - \vec{p}_{V_2,t}\right) \mathcal{F}_g(\mathbf{x}_1, \mathbf{q}_{1t}^2, \mu_F^2) \mathcal{F}_g(\mathbf{x}_2, \mathbf{q}_{2t}^2, \mu_F^2) . (11)$$

The x_1 and x_2 are calculated from χ_c 's transverse masses and rapidities in the standard way.

 $pp \rightarrow \chi_c$

 $\begin{aligned} &\sigma_{k_t-fact} < \sigma_{coll} \text{ for } \chi_c(0), \chi_c(2) \\ &\sigma_{k_t-fact} > \sigma_{coll} = 0 \text{ for } \chi_c(1) \\ & \text{We reproduce formulae of Kniehl, Vasin, Saleev.} \end{aligned}$

$pp \rightarrow \chi_c \chi_c$, prelimianary results

Table: Cross sections in nb for production of different $\chi_c(J_1)\chi_c(J_2)$ dimeson states for the full phase space for $\sqrt{s} = 8$ TeV.

ATLAS	χc(0)	$\chi_{c}(1)$	$\chi_{c}(2)$
$\chi_{c}(0)$	1.32	1.71	4.24
$\chi_{c}(1)$		0.84	2.88
$\chi_{c}(2)$			3.45

Figure: Rapidity distributions of quarkonia for different spin combinations.

Figure: Transverse momentum distributions of quarkonia for different spin combinations.

Figure: Distributions in the rapidity separation between χ_c 's for different spin combinations.

Figure: Distributions in the transverse momentum of quarkonium pairs for different spin combinations.

 $pp \rightarrow \chi_c(i)\chi_c(j)$ contributions

Figure: Distributions in the rapidity difference between two J/ψ (dashed line) and for the sum over all $\chi_c \chi_c$ combinations multiplied by combined branching fractions.

 $pp \rightarrow \chi_c(i)\chi_c(j)$ contributions for ATLAS kinematics

with $p_{i,t} > 8.5$ GeV, -2.1 < $y_i < 2.1$ cuts

with branching fractions !!! $\chi_c(1)\chi_c(1)$ dominance !!!

$pp \rightarrow \chi_c(1)\chi_c(1)$, dominance

The dominance of the $\chi_c(1)\chi_c(1)$ requires extra discussion. In contrast to the $g^*g^* \to \chi_c(1)$ amplitude, the amplitude for $g^*g^* \to \chi_c(1)\chi_c(1)$ does not vanish when $q_1^2 \to 0$ and $q_2^2 \to 0$. This can be understood by the fact that then neither \hat{t} nor \hat{u} (see diagram) have to vanish.

This means that we are alway far from

 $(q_1^2 = 0, \hat{t} = 0), (q_1^2 = 0, \hat{u} = 0)$ and $(q_2^2 = 0, \hat{u} = 0), (q_2^2 = 0, \hat{u} = 0)$ points, i.e. the Landau-Yang theorem is not active.

Even if we are close to one of such points and the *t* or *u* amplitudes are small, it does not happen simulataneously.

simultaneous decay of both J/ψ in Monte Carlo approach -2.1 < $y_1, y_2 < 2.1, p_t > 8.5 \text{ GeV}$ ATLAS-CONF-2016-047, Eur. Phys. J. **C77** (2017) 76.

 $p_{t,\mu} > 2.5 \text{ GeV}$ ATLAS-CONF-2016-047, Eur. Phys. J. **C77** (2017) 76

*p*_{*t,μ*} > 2.5 GeV ATLAS-CONF-2016-047, Eur. Phys. J. **C77** (2017) 76

approximate inclusion of muonic cuts ATLAS-CONF-2016-047, Eur. Phys. J. **C77** (2017) 76

Heavy quark/meson DPS production

in preparation ... (with Rafal Maciuła)

The first process was studied both theoretically and experimentally Both DPS and SPS calculated within k_t -factorization with the KMR UGDF.

Double BB meson production

Peterson fragmentation functions DPS \gg SPS Similar situation as for $D^0 D^0$ measured by the LHCb but much smaller cross section (difficult)

Double DB meson production

Peterson fragmentation functions DPS \gg SPS Similar situation as for $D^0 D^0$ measured by the LHCb relatively large cross section !!!

Conclusions, double J/ψ production

- We have tried several mechanisms of double quarkonium production.
- Leading-order contribution in k_t -factorization.
- two-gluon exchange in collinear approach. go to k_t-factorization (enhancement?).
- ► Double parton scattering calculated based on experimental data for single J/ψ production.
- χ_c(J₁)χ_c(J₂) in k_t-factorization were calculated for the first time. Dominance of χ_c(1)χ_c(1) for the ATLAS cuts.
- For large rapidity distance between two χ_c mesons ladder exchange (BFKL resummation) ?
- Clear signature of double parton scattering mechanism.
- σ_{eff} ~ 5 mb found from experimental analyses may be too small due to missing contributions (included in our calculation). The two-gluon exchange and double χ_c production mechanisms have some characteristics similar as DPS.
- There seems to be still some room for other mechanisms. We have a list of processes to be included.

Conclusions, double J/ψ production

- We have tried several mechanisms of double quarkonium production.
- Leading-order contribution in k_t -factorization.
- two-gluon exchange in collinear approach. go to k_t-factorization (enhancement?).
- ► Double parton scattering calculated based on experimental data for single J/ψ production.
- χ_c(J₁)χ_c(J₂) in k_t-factorization were calculated for the first time. Dominance of χ_c(1)χ_c(1) for the ATLAS cuts.
- For large rapidity distance between two χ_c mesons ladder exchange (BFKL resummation) ?
- Clear signature of double parton scattering mechanism.
- σ_{eff} ~ 5 mb found from experimental analyses may be too small due to missing contributions (included in our calculation). The two-gluon exchange and double χ_c production mechanisms have some characteristics similar as DPS.
- There seems to be still some room for other mechanisms. We have a list of processes to be included.