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Introduction

» J /4 the lightest quarkonium.
Relatively large cross section.

» J /v a good probe of quark-gluon plasma.

» Long-standing problems in microscopic description of J /¢
distributions.
Calculated cross sections much smaller than experimental
ones.

» Color octet model was a "solution”
But it was (is) rather fitted to the data.

» Higher-order collinear or k;-factorization non-relativistic pQCD
lead to larger cross sections.

» There is less and less room for color octet contributions.

» Do we need color-octet contributions ?
Not clear in my opinion.
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Single J /v production

We have done calculations of single J /¢ production within
k¢-factorization and NRpQCD approach including:
» direct (J /v g) production
» feed-down from x. mesons
No fitting parameters (!)
A reasonable description of the midrapidity LHC data is possible.
Not much room for color octet contribution.
(Will not be discussed here.)
Here we concentrate on double J /v production.
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Mechanisms included for J /4J /v

Both single and double parton scattering contributions
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Mechanisms included for J /4J /v

1. Leading order box contribution in k;-factorization approach.
2. Double parton scattering mechanism (data driven).

3. Two-gluon exchange (collinear factorization).

4. Production of x(J1)xc(J2) and feed-down.
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Our previous works on J /4

Our previous works on J /4:

A. Cisek, W. Schafer and A. Szczurek, “Exclusive photoproduction of
charmonia in vyp — Vp and pp — pVp reactions within
k-factorization approach”,

JHEP 1504 (2015) 159. Phys. Rev. D93 (2016) 074014.

A. Cisek, W. Schafer and A. S., "Semiexclusive production of J /1)
mesons in proton-proton collisions”, arXiv:1611.08210, in
Phys.Lett.B.

A. Cisek and A. S., a paper in preparation

A. Cisek, W. Schafer and A.S., a paper in preparation

S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schéfer,
“Interparticle correlations in the production of J /¢ pairs in
proton-proton collisions”, Phys. Rev. D87 (2013) 034035.
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pp — /¥ /4

New data become available recently:
» Tevatron DO data for /s = 1.96 TeV (small o obtained)
» LHCb data (/s =7 TeV)
» CMS data for /s = 8 TeV (running cuts, difficult to interprete)
» ATLAS data for /s = 8 TeV (will be dicussed here)
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pp — J/¢¥J /1, LHCD
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S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schafer,
“Interparticle correlations in the production of J /¢ pairs in
proton-proton collisions”, Phys. Rev. D87 (2013) 034035.
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pp — J/v¥J /1, box

20 diagrams, box (O(a2)), o o |[R(0)[%.
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pp — J/v¥J /1, box
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pp — J/¥J /1, double parton scattering

DPS (0O(a?))
But enhanced by higher powers of gluon distributions gfg% at high
energy.
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pp — J/vJ /v, box contributions

In k¢-factorization approach:

do(pp = J/9J/¥X) = 1 / d%qy daz |/\/l°ﬁ—she|| 2
dyy,dyy,d2py, (d2py,; 167282 P 9% g* =3/ /¢

x 62 (Gt + Got — Pyt — Pyyit) Fo(Xa, U5, 108 ) Fy (%o, 05, iE) - (1)

The corresponding matrix elements squared for the gg — J/4J /¢
(box) is
[Mag—awajel? o a5 |R(O)]* . )

They were calculated e.g. by our collaborator S. Baranov.
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pp — J/¥J /1, 2g exchange (NNLO)

16 diagrams, box (O(a8)) (high-order)

from vy — J/4J /¢ to gg — J/1J /4 first included in:

S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schafer,
“Interparticle correlations in the production of J /¢ pairs in
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pp — J/¥J /1, 2g exchange (NNLO)
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pp — J/vJ /v, box contributions

We have made calculations both in collinear and k;-factorization
approaches. In collinear approach:

do(pp = J/¢9d/y 1 e
dyy, dyy,d?py 167282 7 99—3/v /¢
X g(xlaﬂlzi)g(xblhzz)- 3)

In our calculations we will use MSTWO08 gluon distributions.
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2g exchange mechanism

In high-energy approximation the elementary 2g-exchange process
amplitude
(Dnr Kul)(bnr (Hz)

Mo s / a2 (4)
(K2 + m32) (k3 +m3)
where nonrelativistic g — J /¢ impact factors:

O o /Ty _ere-as (k=1,2).

We take mg = 0 (possible enhancement, but not in this corner of PS)
CDQLV were calculated by Ginzburg,Panfil,Serbo 1987.

It was generalized to g — J /¢ transitions.

O(af) contribution !!!
(so far calculations upto O(a2) in NLO) (Lansberg, Shao 2015)
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experiment driven DPS

do(pp — J/v9)

1

dy,/ydygd?py 167282

Auxiliary final state "gluon” (could be massive).

We take parametrization by Kom-Kulesza-Stirling 2011 with

MSTWO08 PDF.
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Experiment driven DPS

single parton scattering — double parton scattering
We assume factorized Ansatz.

do 1 do do
dy1d?pyedy2d?py 20en  dyi1d2py  dy2d2py
single J /¢ distributions are parametrized.
oeff IN principle a free parameter responsible for the overlap of
partonic densities of colliding protons.
oeff =15 mb is world average for different reactions.

Much smaller value was obtained for double quarkonia
production???

(6)
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PP — XcXe

Figure: A diagrammatic representation of the leading order mechanisms for
pp — xc(J1)xc(J2) — (3/% +~)(3 /¢ + 7) reaction.
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Figure: g*g* — xc(A) vertex being a building block of corresponding
99" — Xxc(J1)xc(J2)-

Q;TTAW(J?JZ) = 0,
a2 Tw(3,32) = 0.
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g*g* — xc vertex
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» NRQCD: expand in the relative momentum k.

21/45



g*g* — xc vertex

The g*g* — QQ amplitude is (up to factors)

Po — Q41 +m
Ao = Q Q

Po — G2 + Mg
Y+ 7
PQ — d1)? —mj (Pq — G2)? —m .
Projector onto spin-triplet
1 P . P
Mg_ = ——k - é(Sz)( = +k .
ST T 22mg (5 - k-mo)as)(5 +k+mo)

» NRQCD: expand in the relative momentum k
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Elementary amplitudes
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Figure: A diagrammatic representation of the generic g*g* — x¢(J1)xc(J2)

t-channel (left) and u-channel (right) amplitudes.
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Elementary amplitudes

Now we wish to discuss the elementary g*g* — xc(J1)xc(J2)
amplitudes M,,,, (31317, J2J27).

The generic amplitude for the gg — xc(J1)xc(J2) subprocess can be
written as:

g
M(A1,h2) = 55 vz,%h*‘ul...)gf Va2,

uv
+VEON 0 )TV O @)
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Elementary amplitudes, gauge invariance

Because of properties of our g*g* — xc(1) vertices the tensorial
amplitudes for the g*g* — xc(1)xc (1) fulfill the following relations:

A Magrs =
ngaﬁvé =
pzMaﬁw? =
ngaﬁw? =

o oo o

(8)

or

M, (I1d12,3232,)9) = 0,
M (31327,3232;)95 = 0.
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Cross section

From the general rules of nonrelativistic pQCD:

Opp—xcxe X aS|RP( )| (9)

The cross section sensitive to the choice of renormalization scale
and the wave function.

40[
(el0) = 77) = o o e RO (10
Xc

Use PDG data.
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Combined branching fractions

Table: Combined decay branching fractions for different combinations of

intermediate x¢(J1)xc(J2) dimeson states.

Xc(o) Xc(l) Xc(z)
xc(0) | 1.44 10— | 0.0035 | 0.002
xc(1) 0.0035 0.12 0.07
xc(2) 0.002 0.07 0.035
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PP — XcXc Cross section

The k;-factorization approach the corresponding differential cross
section can be written as:

dolpp = xexeX) 1 /dZQHdZQZtW
dym, dym,d?pm, 1d%pm,r 167282 T - 9*g* —XcXe

x &2 (qlt + ot — 5V1,t — 5V2,t) Fg(x1, pr/f%)]:g (X2, q%mﬁ) (11)

The x; and x, are calculated from x.'s transverse masses and
rapidities in the standard way.
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PP — Xc

Ok —fact < Ocol for xc(0), xc(2)
Ok,—fact = Ocoll = 0 for Xc(l)
We reproduce formulae of Kniehl, Vasin, Saleev.
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PP — XcXc, Prelimianary results

Table: Cross sections in nb for production of different x¢(J1)xc(J2) dimeson
states for the full phase space for /s = 8 TeV.

ATLAS | xc(0)

xe(1) | xc(2)
xc(0) | 1.32 | 1.71 | 4.24
xc(1) 0.84 | 2.88
xc(2) 3.45
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PP — XcXe, results
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Figure: Rapidity distributions of quarkonia for different spin combinations.

A. Cisek, W. Schafer and A. Szczurek, arXiv:1711.07366
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PP — XcXe, results
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Figure: Transverse momentum distributions of quarkonia for different spin

combinations.

A. Cisek, W. Schafer and A. Szczurek, arXiv:1711.07366
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PP — XcXe, results
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Figure: Distributions in the rapidity separation between x.’s for different
spin combinations.

A. Cisek, W. Schafer and A. Szczurek, arXiv:1711.07366
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PP — XcXe, results
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Figure: Distributions in the transverse momentum of quarkonium pairs for
different spin combinations.

A. Cisek, W. Schafer and A. Szczurek, arXiv:1711.07366
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pp — Xxc(i)xc(j) contributions

Figure: Distributions in the rapidity difference between two J /¢ (dashed
line) and for the sum over all x:x. combinations multiplied by combined

branching fractions.
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pp — Xc(i)xc(j) contributions for ATLAS kinematics

with p;; > 8.5 GeV, -2.1 <y; < 2.1 cuts

10g

—=X.0%.0)
XOXW)

-
T

(g,

da/da

with branching fractions !!! x¢(1)xc(1) dominance !!!
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PP — Xc(1)xc(1), dominance

The dominance of the xc(1)xc(1) requires extra discussion.

In contrast to the g*g* — x¢(1) amplitude, the amplitude for

9*9* — xc(1)xc(1) does not vanish when g2 —0 and g3 — 0. This
can be understood by the fact that then neither t nor G (see diagram)
have to vanish.

This means that we are alway far from

(a2 =0, =0),(9? = 0,04 = 0)and(qZ = 0,4 = 0),(q3 = 0,( = 0)
points, i.e. the Landau-Yang theorem is not active.

Even if we are close to one of such points and the t or u amplitudes
are small, it does not happen simulataneously.
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First results, with muon cuts
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simultaneous decay of both J /¢ in Monte Carlo approach
21 <yq,y2 < 2.1, pt > 8.5 GeV
ATLAS-CONF-2016-047, Eur. Phys. J. C77 (2017) 76.
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First results, with muon cuts
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First results, with muon cuts
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First results, with muon cuts
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Heavy quark/meson DPS production

in preparation ... (with Rafal Maciuta)

The first process was studied both theoretically and experimentally
Both DPS and SPS calculated within k¢-factorization with the KMR
UGDF
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Double BB meson production
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DPS > SPS
Similar situation as for D°D° measured by the LHCb

but much smaller cross section (difficult)
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Double DB meson production
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Similar situation as for D°D° measured by the LHCb
relatively large cross section !!!
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Conclusions, double J /« production

>

We have tried several mechanisms of double quarkonium
production.
Leading-order contribution in k¢-factorization.
two-gluon exchange in collinear approach.
go to k¢-factorization (enhancement?).
Double parton scattering calculated based on experimental data
for single J /¢ production.
xc(J1)xc(J2) in ke-factorization were calculated for the first time.
Dominance of x¢(1)xc(1) for the ATLAS cuts.
For large rapidity distance between two y. mesons — ladder
exchange (BFKL resummation) ?
Clear signature of double parton scattering mechanism.

found from experimental analyses may be too small
due to missing contributions (included in our calculation).
The two-gluon exchange and double x. production mechanisms
have some characteristics similar as DPS.
There seems to be still some room for other mechanisms.
We have a list of processes to be included. .
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