
Monte Carlo Generators
and Rivet Tutorial

Deepak Kar, MPI@LHC Workshop, Shimla, India

1

“The predictions of the model are reasonable enough physically
that we expect it may be close enough to reality to be useful in

designing future experiments and to serve as a reasonable
approximation to compare to data. We do not think of the model

as a sound physical theory . . . ”

 – Richard Feynman and Rick Field, 1978

2

This Tutorial

How to generate simulated events: Pythia8 (you already
learned Herwig7)

Analysis framework: RIVET for particle level analysis.

Now is a good time to fire up the virtual machine (hope
you have it :)

3

Pythia8

... is a leading order PS generator.

One of the most widely used for many years.

Relatively easy to install (along with its friends: HepMC,
and LHAPDF6) and run, online user manual:
http://home.thep.lu.se/~torbjorn/pythia82html/
Welcome.html

Run via various mainXX programs.

4

http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html
http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

Generating events with Pythia8

Start the terminal

Pythia8230 is located at: > Documents/src/pythia8230

We will use main42, a generic main program. It is inside examples directory.

Compile: make main42, should result in a main42 executable in the directory.

Input (which process to generate, how many events, collision energy, ...) are
specified via a runcard (cmnd files), we will use main42.cmnd

> ./main42 main42.cmnd out.hepmc

5

Run Card

6

! File: main42.cmnd
! This file contains commands to be read in for a Pythia8 run.
! Lines not beginning with a letter or digit are comments.
! Names are case-insensitive - but spellings-sensitive!
! The changes here are illustrative, not always physics-motivated.

! 1) Settings that will be used in a main program.
Main:numberOfEvents = 200 ! number of events to generate
Main:timesAllowErrors = 3 ! abort run after this many flawed events

! 2) Settings related to output in init(), next() and stat().
Init:showChangedSettings = on ! list changed settings
Init:showAllSettings = off ! list all settings
Init:showChangedParticleData = on ! list changed particle data
Init:showAllParticleData = off ! list all particle data
Next:numberCount = 1000 ! print message every n events
Next:numberShowLHA = 1 ! print LHA information n times
Next:numberShowInfo = 1 ! print event information n times
Next:numberShowProcess = 1 ! print process record n times
Next:numberShowEvent = 1 ! print event record n times
Stat:showPartonLevel = on ! additional statistics on MPI

! 3) Beam parameter settings. Values below agree with default ones.
Beams:idA = 2212 ! first beam, p = 2212, pbar = -2212
Beams:idB = 2212 ! second beam, p = 2212, pbar = -2212
Beams:eCM = 14000. ! CM energy of collision

Change to 5000

Change to 13000 Continued…

Run Card

7

! 4) PDF settings. Default is to use internal PDFs
! some pdf sets examples: cteq61.LHpdf cteq61.LHgrid MRST2004nlo.LHgrid
#PDF:pSet = LHAPDF5:MRST2001lo.LHgrid
! Allow extrapolation of PDF's beyond x and Q2 boundaries, at own risk.
! Default behaviour is to freeze PDF's at boundaries.
#PDF:extrapolate = on

! 5a) Pick processes and kinematics cuts.
! Colour singlet charmonium production of J/psi and chi_c.
Charmonium:gg2ccbar(3S1)[3S1(1)]g = on,off
Charmonium:gg2ccbar(3PJ)[3PJ(1)]g = on,on,on
Charmonium:qg2ccbar(3PJ)[3PJ(1)]q = on,on,on
Charmonium:qqbar2ccbar(3PJ)[3PJ(1)]g = on,on,on
PhaseSpace:pTHatMin = 20. ! minimum pT of hard process

! 5b) Alternative beam and process selection from a Les Houches Event File.
! NOTE: to use this option, comment out the lines in section 5a above
! and uncomment the ones below. Section 3 is ignored for frameType = 4.
#Beams:frameType = 4 ! read info from a LHEF
#Beams:LHEF = events.lhe ! the LHEF to read from

! 6) Other settings. Can be expanded as desired.
! Note: may overwrite some of the values above, so watch out.
#Tune:pp = 6 ! use Tune 4Cx
#ParticleDecays:limitTau0 = on ! set long-lived particle stable ...
#ParticleDecays:tau0Max = 10 ! ... if c*tau0 > 10 mm

Change to
process

of interest
(comment out

or remove)

Uncomment For Monash:
Change to:
Tune:ee =7

Tune:pp = 14

Example Run Cards

8

Z-boson production
and leptonic decay

! 5a) Pick processes and kinematics cuts.
WeakSingleBoson:ffbar2gmZ =on
23:onMode = off
23:onIfAny = 11 13
23:mMin = 60

W-boson production
and leptonic decay

! 5a) Pick processes and kinematics cuts.
WeakSingleBoson:ffbar2W = on
24:onMode = off
24:onIfAny = 11 -11 13 -13

ttbar production
and semileptonic decay
! 5a) Pick processes and kinematics cuts.
Top:gg2ttbar = on
Top:qqbar2ttbar = on
24:onMode = off
24:onPosIfAny = 11 13
24:onNegIfAny = 1 2 3 4 5

Minbias Events

! 5a) Pick processes and kinematics cuts.
SofQCD:inelastic = on

So then ...

9

Analyze the events

ROOT is used extensively by the experiments

But unless you are an experimentalist, it is probably too
intimidating for you

Many times, you just want to quickly look at simulated
events...

10

RIVET

A generator agonistic analysis system for generators (no
direct data analysis!) in C++ (now in C++11)

Physics plots from generator output (in HepMC format)

Compare MC predictions with built-in actual (unfolded)
data analyses from different experiments

Everything defined in terms of stable final state objects

Details: https://rivet.hepforge.org/

Based somewhat on Andy Buckley’s LH13 tutorial

11

https://rivet.hepforge.org/

Important!

12

Rivet for you!

Super convenient bootstrap script to install (Rivet and all its
dependencies) at rivet.hepforge.org

Source codes of existing analyses serve as useful examples

Helping the community by adding your analysis to the
official library

13

http://rivet.hepforge.org

Trying out RIVET

... it is setup for you, just do > source Documents/bin/
activate

> rivet --help

> rivet --list-analyses (ATLAS_ or MC_)

14

Running a Data Analysis
Since we are looking at Minbias events, lets try
> rivet -a ATLAS_2016_I1467230 -a ATLAS_2016_I1468167 -a
ATLAS_2017_I1509919 out.hepmc

Output: Rivet.yoda

Look inside the yoda file

Plot with rivet-mkhtml Rivet.yoda : :
(--mc-errs)

View plots by firefox rivet-plots/index.html

15

Compare Pythia8 and Herwig7

Run the same rivet command on the Herwig7 output hepmc
file.

Remember to remember the earlier output yoda file to say
out_py8.yoda (otherwise it will get overwritten, or you can
do -o out_her7.yoda here)

Plot both yoda files together!

16

Plot File (example)

17

Labels, formatting
controlled by corresponding

.plot file

The data is present in corresponding reference .yoda file

Writing an Analysis
The analyses named MC_ are pure MC based analysis, no
reference data to compare with.

Useful for testing generator predictions.

You can make a template: rivet-mkanalysis MC_MyAna

Find the MC_MyAna.cc file in the directory (also
MC_MyAna.info and MC_MyAna.plot)

Look inside the cc file!

18

There are many different analyses in Rivet code repository. Usually one or
more examples should be close to what you are trying to do.

Walkthrough

19

// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"

namespace Rivet {

 /// @brief Add a short analysis description here
 class MC_MyAna : public Analysis {
 public:

 /// Constructor
 DEFAULT_RIVET_ANALYSIS_CTOR(MC_MyAna);

 /// @name Analysis methods
 //@{

Basic include stuff,
add new headers as required

Continued…

1

Walkthrough

20

 /// Book histograms and initialise projections before the run
 void init() {

 // Initialise and register projections
 declare(FinalState(Cuts::abseta < 5 && Cuts::pT > 100*MeV),
"FS");

 // Book histograms
 _h_XXXX = bookProfile1D(1, 1, 1);
 _h_YYYY = bookHisto1D(2, 1, 1);
 _h_ZZZZ = bookCounter(3, 1, 1);

 }

Expect usual C++ init/execute/finalize type loop code structure

Continued…

2

Walkthrough

21

 /// Book histograms and initialise projections before the run
 void init() {

 // Initialise and register projections
 declare(FinalState(Cuts::abseta < 5 && Cuts::pT > 100*MeV),
"FS");

 // Book histograms
 _h_XXXX = bookProfile1D(1, 1, 1);
 _h_YYYY = bookHisto1D(2, 1, 1);
 _h_ZZZZ = bookCounter(3, 1, 1);

 }

Expect usual C++ init/execute/finalize type loop code structure

Continued…

2

Projections and
declaration of two types

of histograms

Walkthrough

22

 /// Book histograms and initialise projections before the run
 void init() {

 // Initialise and register projections
 declare(FinalState(Cuts::abseta < 5 && Cuts::pT > 100*MeV),
"FS");

 // Book histograms
 _h_XXXX = bookProfile1D(1, 1, 1);
 _h_YYYY = bookHisto1D(2, 1, 1);
 _h_ZZZZ = bookCounter(3, 1, 1);

 }

Expect usual C++ init/execute/finalize type loop code structure

Continued…

2

Projections and
declaration of two types

of histograms

Projections

Observable calculators - from an event, project out the
physical observables.

Already defined in the framework

Registered with a name in init

Applied to the current event in analyze

Avoids unnecessary repetition in the code

23

Some Details

24

Histogramming

Declare at init by bookHisto1D or bookProfile1D (usual
name, binning)

Can be autobooked from reference data!

Usual fill method in analyze

scale or normalize in finalize

Declare the pointers

25

Walkthrough

26

 /// Perform the per-event analysis
 void analyze(const Event& event) {

 /// @todo Do the event by event analysis here

 }

 /// Normalise histograms etc., after the run
 void finalize() {

 normalize(_h_YYYY); // normalize to unity
 scale(_h_ZZZZ, crossSection()/picobarn/sumOfWeights()); // norm to cross
section

 }

 //@}

Continued…

3

Heart of the code:
Fill histograms here

Normalize

Some Other Details

27

Walkthrough

28

 /// @name Histograms
 //@{
 Profile1DPtr _h_XXXX;
 Histo1DPtr _h_YYYY;
 CounterPtr _h_ZZZZ;
 //@}

 };

 // The hook for the plugin system
 DECLARE_RIVET_PLUGIN(MC_MyAna);

}

4

Histogram pointers
declared

Task

Modify this code to plot number of charged particles and
their pT

29

Add/Modify

30

#include "Rivet/Projections/ChargedFinalState.hh"

declare(ChargedFinalState(Cuts::abseta < 2.5 && Cuts::pT > 100*MeV), "CFS");

_h_Nchg = bookHisto1D("Nchg",20,0,100);
_h_pT = bookHisto1D("pT",40,0,200);

const FinalState& cfs = apply<FinalState>(event, "CFS");
double mult = cfs.size();
_h_Nchg->fill(mult);
for (const Particle& p : cfs.particles()) {
 h_pT->fill(p.pT()/GeV);
}

normalize(_h_Nchg); // normalize to unity
normalize(_h_pT);

 Histo1DPtr _h_Nchg, _h_pT;

Added in headers

Projection definition
changedHistograms

declared

In event-loop
calculate variables

and filled histograms

Normalised

Histogram pointers

MC_MyAna

Compile by: rivet-buildplugin RivetMC_MyAna.so MC_MyAna.cc

export RIVET_ANALYSIS_PATH=$PWD (or use —pwd switch)

Run over the same hepmc file and plot.

31

FIFO

HepMC files tend to become unmanageably large (5000
events ~ 1 GB)

Often times, we need millions of events

We use fifo (file in, file out), which is like a pipe. One event
enters, gets processed, only then the second event is
generated ...

Look at Run.sh file (we will run that later)

32

Fifo Script

33

New Feature
For searches, no unfolded data

Approximate detector response/efficiencies can be made
available

Smearing of final state objects implemented (from v2.5.0)

34

Congratulations!

35

