9th International Workshop on Multiple Partonic Interactions at the LHC Scaling properties of the underlying event in high-energy pp collisions

Antonio Ortiz

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

> (In collaboration with Lizardo Valencia, Universidad de Sonora, Mexico)

> > arXiv:1710.04741

Instituto de Ciencias Nucleares UNAM

Underlying Event (UE)

In the context of event simulation the Underlying Event refers to everything that does not originate from the main hard scattering

Underlying Event (UE)

- In the context of event simulation the Underlying Event refers to everything that does not originate from the main hard scattering
- Experimentally we measure quantities which are sensitive to UE: particle production within a region which is perpendicular to the direction of the main scattering

Initial observations, ATLAS results

Multiplicity density of primary charged-particles (number density) as a function of the largest transverse momentum (leading charged particle) of the event

Evidence of the impact parameter dependence in the hadronic collisions: the harder the *p*_T scale is, the more central the collision **GOAL**: Understand the energy dependence of the quantities sensitive to the underlying event

Interesting scaling of the number density as a function of the leading p_T. The effect is unveiled once the number density is scaled according with the change of the average multiplicity wrt pp at √s = 0.9 TeV
 Same factor for regions sensitive to different physics

Same effect seen in ALICE data (f is that from ATLAS data)

ALICE, JHEP 07 (2012) 116

December 12, 2107. 9th MPI Workshop (Shimla, India)

The scaling also holds for the summed transverse momentum

PYTHIA 8.212 reproduces the scaling properties

\sqrt{s} dependence of UE vs MB

December 12, 2107. 9th MPI Workshop (Shimla, India)

Antonio Ortiz (ICN, UNAM)

12

- Within uncertainties, we obtain the following approximate relations:
- $\mathrm{UE}^{13\,\mathrm{TeV}} \frac{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle^{0.9\,\mathrm{TeV}}}{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle^{13\,\mathrm{TeV}}} \approx \mathrm{UE}^{0.9\,\mathrm{TeV}} \approx \mathrm{UE}^{7\,\mathrm{TeV}} \frac{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle^{0.9\,\mathrm{TeV}}}{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle^{7\,\mathrm{TeV}}}$
- UE: mean multiplicity in the transverse region ($p_T^{\text{leading}} > 7 \text{ GeV}/c$) $\langle dN_{ch}/d\eta \rangle$: inclusive average multiplicity for the specific event class, e.g. events with at least one charged particle within $|\eta| < 2.5$ and $p_T > 0.5 \text{ GeV}/c$

Therefore, $\frac{{
m UE}}{\langle {
m d}N_{
m ch}/{
m d}\eta
angle}$ would be little dependent on \sqrt{s}

PYTHIA vs data

PYTHIA vs data

Similar effects in MPI

December 12, 2107. 9th MPI Workshop (Shimla, India)

Similar effects in MPI

December 12, 2107. 9th MPI Workshop (Shimla, India)

2.8

3.2

3

3.4

3.8

3.6

4 4.2 log₁₀(√s/GeV)

p⊤-differential UE

December 12, 2107. 9th MPI Workshop (Shimla, India)

EPOS 3.2 predictions

December 12, 2107. 9th MPI Workshop (Shimla, India)

EPOS 3.2 predictions

EPOS 3.2 predictions

December 12, 2107. 9th MPI Workshop (Shimla, India)

Multiplicity distributions associated to UE

N_{ch} distributions of UE

<ne>/ue//ue>) *****Inclusive charged particles multiplicity distributions have shown the breaking of the KNO scaling at high \sqrt{s} **10**⁻¹ ***** However, for the multiplicity distributions associated to UE a sort of KNO scaling is observed 10⁻² PYTHIA 8.212 (ml<0.8, p₁>0.5 GeV/c) • pp √s= 0.90 TeV 10^{-3} ■ pp *\s*= 2.76 TeV pp *\s*= 5.02 TeV pp √*s*= 7.00 TeV pp *\s*= 13.00 TeV ,leading >7 GeV/*c* $\pi/3 < |\Delta \phi| < 2\pi/3, p$ 10^{-4} 2 3 8 5 6 9 10 4 UE/(UE)

$\pi/K/p p_T$ distributions associated to UE

 $p_T^{\text{leading}} > 10 \text{ GeV}/c \text{ charged particles within } |\eta| < 2.5$

Inclusive charged particles

Inclusive charged particles

Inclusive charged particles

~Same slope (same origin)
 Remaining hard component
 To remove the remaining jet contamination (from UE) we can compute the ratio: UE(p_{PT})

Jet Peak

UE/Jet ratio

Identified particles

Summary

- The impact parameter dependence of the underlying event (\approx activity in the transverse region vs p_T^{leading}) was studied as a function of \sqrt{s}
- The UE activity in central pp collisions (high p_T^{leading} values), scaled to the "MB" inclusive average multiplicity, exhibits a little increase with \sqrt{s} (\approx 10% from 0.9 to 13 TeV). Therefore, the ratio UE/ \langle dN/d η \rangle is sensitive to the collision centrality
- PYTHIA 8.212 (tune Monash 2013) reproduces the behaviour of data. The scaling properties observed at measurable particle level are also observed at partonic level
- The multiplicity distributions associated to the underlying event obey a KNO scaling

BACKUP

December 12, 2107. 9th MPI Workshop (Shimla, India)

Antonio Ortiz (ICN, UNAM)

33

Instituto de Ciencias Nucleares UNAM

KNO scaling of UE? Check with PYTHIA 8.212 + FastJet 3.1 Events with $p_T^{\text{leading}} > 10 \text{ GeV}/c$ within $|\eta| < 2.5$

In this study I considered visible particles

Instituto de

Instituto de

December 12, 2107. 9th MPI Workshop (Shimla, India)

UE studies

How to study the new phenomena in pp?

Figures taken from: M. Veldhoen (ALICE), NPA 910-911 (2013) 306-309

Antonio Ortiz (ICN, UNAM)

From MC we know that different sensitivities can be achieved depending on the pseudorapidity region

Nucl. Phys. A956 (2016) 749-752

Same effect in MPI

EPOS 3.2 vs PYTHIA 8.2

December 12, 2107. 9th MPI Workshop (Shimla, India)