

Results of Ultraperipheral Collisions with CMS experiment

Dipanwita Dutta

On behalf of the CMS collaboration

Bhabha Atomic Research Centre, Mumbai, India

MPI @ LHC 2017, 11th -15th Dec. 2017, Shimla, India

Introduction

UPC:Theoretical and Experimental result

Photoproduction of Upsilon @ pPb UPC 5.02 TeV with CMS

CMS-FSQ-13-009, https://cds.cern.ch/record/2147428

Photoproduction of J/ ψ @ PbPb UPC 2.76 TeV with CMS Phys. Lett. B 772 (2017) 489

Light by Light Scattering @ PbPb UPC 5.02TeV with CMS

Conclusion

Ultra Peripheral Collisions (UPC)

The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons

Note1:

Interactions at large impact

parameters (UPC) are of electromagnetic origin, Interaction by cloud of photon, hadronic interactions are suppressed

UPC Rev : A. J. Baltz et al. Phys. Rep. 458 (2008)1

D. Dutta, BARC

Note 2:

There are two potential sources, correspondingly two potential targets.

Note3:

The photon is coherently emitted by the source and its virtuality is restricted by the radius of the emitting particle: $Q^2 \approx (hc/2\pi R)^2$ γ from Pb: $Q^2 \approx (30 \text{ MeV})^2$ γ from p: $Q^2 \approx (250 \text{ MeV})^2$

Note 4:

The flux of the equivalent photon beam is proportional to Z²

Note 5:

The max energy of the photons in the lab system is determined by the boost of the emitting particle

 $ω_{max} = (\gamma_L / R), \gamma_L = Lorentz boost$ p: ω = 950 GeV; Pb: ω

p:
$$\omega_{max} = 950 \text{ GeV}$$
; Pb: $\omega_{max} = 50 \text{ GeV}$
In Run2: larger energies possible

MPI @ LHC 2017

Photoproduction of vector meson

- Photoproduction is convolution of
- Photon flux
- Photonuclear cross-section
 - Photoproduction of vector mesons (J/ ψ , Υ) sensitive to the gluon density squared in the nucleon (nucleus)

 $x = (M_v/W_{\gamma p})^2$, $W_{\gamma p}^2 = 2 E_p M_v \exp(\pm y)$

 Probe poorly known gluon distribution in the Proton at low Bjorken x (10⁻⁴ to 10⁻²) and search for saturation effects.

$$Q^2 \approx \frac{M_V^2}{4} (2.4 GeV^2 for J/\psi, 22.37 GeV^2 for \Upsilon)$$

D. Dutta, BARC

MPI @ LHC 2017

Recent results

Cross section as a function of photon proton centre of mass energy J/ψ photoproductio LO and NLO fit to H1 , ZEUS, LHCb, ALICE data

Ph

Pb

 10^{-}

Recent results

Exclusive upsilon photoproduction in pPb @ 5.02 TeV

CMS-PAS-FSQ-13-009, https://cds.cern.ch/record/2147428

→ 2013 pPb data at 5.02 TeV with 32.6 nb⁻¹

CMS-FSQ-13-009 https://cds.cern.ch/record/2147428

- → Offline exclusive pPb → Y (yp) → $\mu^+\mu^-$ signal selection
 - Invariant mass (µµ) : 9.1-10.6 GeV
 - Opposite-sign $\mu\mu\,$ pair (final state) originating from commom primary vertex
 - No extra tracks at $\mu\mu\,$ vertex to suppress non-exclusive background
 - Single muon $p_{_{\rm T}}$: >3.3 GeV and $|\eta|<$ 2.2 high muon finding efficiency
 - Upsilon p_{τ} : 0.1-1 GeV to suppress QED and non-exclusive background
 - Upsilon |y| < 2.2 high muon finding efficiency

Exclusive upsilon photoproduction (data/MC)

- Data compared to simulation (contains different contribution)
- → Low p_{τ} : **QED** elastic background, estimated by **STARLIGHT**
- → High p_T : Non-exclusive background (DY+ incl. Y + p diss. γp) estimated from data

Good agreement betweem data and MC Number of signal events estimated by subtracting all background contributions. CMS-FSQ-13-009

https://cds.cern.ch/record/2147428

Photoproduction cross section as a function of p

CMS-FSO-13-009

https://cds.cern.ch/record/2147

 The differential cross section is calculated according to

$\frac{d\sigma_{Y(nS)}}{dp_T^2} \cdot B = \frac{N_{Y(nS)}^{corr}}{L \times \Delta p_T^2}$

- N^{corr}_{Y(nS)}, the background subtracted, unfolded and acceptance corrected number of upsilon (1S+2S+3S) events in each p_{T}^{2} bin.
- → do/dt fitted with an exponential function, provides the information on the transverse profile of the interaction region.

CMS Results b= 4.5 ± 1.7 (stat.) ± 0.6 (syst.) GeV⁻² Data is in agreement with ZEUS measurements ZEUS for Y(1S) **b** = $4.3^{+2.0}$ (stat) Phys.Lett.B 708 (2012) 14

The cross-section is estimated by 1 dσ_m(x)

$$\sigma_{\gamma p \to \gamma(1S)p} = \frac{1}{\Phi} \frac{a \sigma_{\gamma(1S)}}{dy}$$

→ Rapidity distribution of $\Upsilon(1S)$ is used to estimate $\sigma_{\gamma p}(1S)$ vs $W_{\gamma p}$

The cross-section is corrected for muonic branching ratio, feeddown, upsilon (1S) fraction

Data compatible with power-law dependence of $\sigma(W_{yp})$, disfavours LO pQCD predictions

 $\Delta = 1.2 \pm 0.8$ Phys.Lett. B680 (2009) 4-12

CMS-FSQ-13-009 https://cds.cern.ch/record/21474

Coherent J/ ψ photoproduction in PbPb @ 2.76 TeV

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

Phys. Lett. B 772 (2017) 489

Coherent J/ ψ photoproduction in PbPb

Event Selection :

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

- **UPC trigger**: (i) at least one neutron in either ZDC and no activity in both side BSC
- → **Offline**: No HF activity, Muon 1.2 < $|\eta|$ < 2.4 and 1.2 < p_{τ} < 1.8 GeV/c, p_{τ} (m⁺m⁻) < 1.0 GeV, 2.6 < M (m⁺m⁻) < 3.5 GeV t Phys. Lett. B 772 (2017) 489

 $X_n 0_n$ single-sided neutron emission with any number of neutrons $X_n X_n$ double-sided neutron emission with any number of neutrons $1_n 1_n$ double-sided neutron emission with only one neutron on each side

J/ ψ with $p_{\rm T}$ <0.15 GeV/ c	$X_n X_n / X_n 0_n$		$1_n 1_n / X_n 0_n$
Data	$0.36{\pm}0.04$		$0.03 {\pm} 0.01$
STARLIGHT	0.37	-	0.02
GSZ	0.32	-	0.02

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

- → Coherent yield in X_n0_n mode for p₁ < 0.15 GeV/c</p>
- Cross section for X_n0_n is scaled up to the total cross section using STARLIGHT
- CMS and ALICE, show good agreement with theoretical models which include considerable nuclear gluon shadowing

HIN-12-009: http://cds.cern.ch/record/215490 http://arxiv.org/abs/1605.06966v1

Light by Light Scattering in PbPb Collisions @ 5.02 TeV

.ight-by-light scattering in PbPb collisions

Light-by-light MC expectations after cut

Event selection: $p_T(\gamma) > 2 \text{ GeV}$, $p_T(\gamma\gamma) < 2 \text{ GeV}$, aco < 0.01

BARC

परमाणु अनुसंधान केंद्र

With current luminosity, we expect ~10 exclusive photon pairs, on top of small QED+CEP backgrounds. Data analysis ongoing.

Theoretical predictions

Theoretical prediction of Upsilon photoproduction

- Photoproduction is convolution of
- Photon flux \geq
- Photonuclear cross-section \triangleright

Ref. V. Guzey and M. Zhalov, JHEP 1402, 46 (2014); A. Adeluyi and C. A. Bertulani, Phys. Rev. C 85, 044904(2012), S. R. Klein and J. Nystrand, Phys. Rev. Lett. 92, 142003 (2004)

D. Dutta, R. Chudasama, arXiv:1711.05999

Theoretical prediction of Upsilon photoproduction

pPb@ 5.02 TeV. Run1

Phys. Lett. B 772

- ➤ Exclusive upsilon photoproduction in pPb @ 5.02 TeV (PAS public)
 - \bullet The first measurement of exclusive Υ photoproduction in pPb collisions at 5.02 TeV
 - Data compatible with power-law dependence of $\sigma(W_{_{yp}})$, disfavours LO pQCD predictions
 - The differential cross-section $d\sigma/dp_{\tau}^2$ is in agreement with earlier measurements
- → Coherent J/ ψ photoproduction in PbPb collisions @ 2.76 TeV
 - First measurement of coherent J/ψ photoproduction in different (2017) 489 nuclear break-up mode
 - Rapidity distribution compatible with considerable nuclear gluon shadowing
- → Light by Light Scattering in PbPb Collisions @ 5.02 TeV
 - Elastic light-by-light (LbyL) scattering, fundamental quantummechanical process with a tiny cross section, experimentally unobserved so far (recent ATLAS 4σ evidence)
 - Analysis in very advanced stage, final results expected soon.
- Expect more exciting results in different exclusive channel
 (J/ψ,Y,ρ,dijet,light-light..) in future, with UPC PbPb @ 5.02 TeV in
 2015 and pPb @ 8.16 TeV in 2016.

Thank you

Back up

UPC Triggers for 2013 pPb

- L1 required loosest muon or electromagnetic calorimeter triggers only
- More sophisticated HLT

- Higher available L1 bandwidth
 - Removed veto on BSC and requirement of ZDC from the the L1 trigger
- Restrict multiplicity to < 7 tracks in the HLT
- HLT Triggers
 - Require at least one fully reconstruction of dimuon candidate
 - Require < 10 pixel tracks in monitoring path

UPC Triggers for 2011 PbPb

- L1: hardware trigger system from calorimeters and muon systems only
 - Loosest muon trigger and electromagnetic calorimeter trigger
 - At least one ZDC above threshold
 - No activity on both sides of the interaction point in the BSC detectors, 3 < |η| < 5
- HLT: software trigger system using the full detector
 - Require reconstruction of at least on pixel track

Systematic uncertainty for exclusive Y in pPb

Systematic uncertainties on the measurements of the *b* of the exponential |t| dependence and the $d\sigma/dy$ cross section; individual contributions, as well as the total systematic uncertainty are shown.

Source	b	$d\sigma/dy$
Inclusive background modeling	11%	10%
Exclusive QED background modeling	6%	18%
Muon efficiency (Tag and Probe)	-	11%
Unfolding	2%	1%
MC modeling	2%	7%
Feed-down	-	2%
Branching ratios	-	2%
Luminosity	-	4%
Total	13%	25%

Systematic uncertainty for exclusive J/ ψ in PbPb @

	Uncertainty
(1) Neutron tagging	6%
(2) HF energy cut	1%
(3) signal extraction	5%
(4) MC input	1%
(5) ZDC efficiency estimation	3%
(6) Tracking reconstruction	4%
(7) Luminosity determination	5%
(8) Branching ratio	1%
Total	11%