Two-particle correlation and flow of identified hadrons in small systems at LHC energies

Kishora Nayak (for the ALICE Collaboration)

National Institute of Science Education and Research, HBNI, Jatni-752050, India

Kishora Nayak

Di-Hadron ridge structures

Central (0-10%) Pb-Pb:

Near side ridge structure

 \clubsuit Long range correlation in $\Delta\eta$

ALICE Phys. Lett. B 708, 249-264 (2012)
ATLAS Phys. Rev. C 86, 014907 (2012)
CMS JHEP 09, 091 (2010)
B. Schenke *et al.*, Phys. Rev. Lett. 106, 042301 (2011)

Kishora Nayak

ALICE

Di-Hadron ridge structures

High multiplicity p-Pb events:

- Long range structure on both the near and away side
- Double ridge in p-Pb
- Quantified using Fourier decomposition

Final state effects:

Multiparticle interaction, Collective effects

Small system: Does it flow or not?

-Particle identification might shed light

ALICE Phys. Lett. B 719, 29 (2013)

Particle identification in ALICE

Kishora Nayak

ALICE

Collectivity in Small Systems *Part-I : Di-Hadron Correlations*

Kishora Nayak

Associated yield per trigger particle

ALICE

No significant ridge and energy loss

Jet contribution reduced assuming:

- Mostly jet contribution (i.e. no significant ridge) in low multiplicity p-Pb events
- No significant medium effect in the energy loss / jet fragmentation

Kishora Nayak

ALICE

Flow of identified hadrons in p-Pb

Flow of identified hadrons in p-Pb

For p-Pb:

* v_2 of π is similar to v_2 of unidentified hadrons (h)

ALICE: JHEP 06, 190 (2015)

- Hint of kaon v_2 smaller than πv_2 at low- p_T
- ✤ Proton v₂ is smaller than π v₂ at low- p_T (< 2 GeV/*c*) and larger above
- Consistent with Hydrodynamics prediction : P. Bozek, et al. Phys. Rev. Lett. 111, 172303 (2013)

v₂ of identified hadrons in high multiplicity p-Pb resembles to v₂ in Pb-Pb

NCQ scaling of identified hadrons in Pb-Pb

NCQ scaling is approximate in Pb-Pb collisions

9th International Workshop on Multiple Partonic Interactions at the LHC, Shimla, India

NCQ scaling in p-Pb

Number of constituent quark (NCQ) scaling is approximate in high multiplicity p-Pb similar to Pb-Pb collisions

ALICE: JHEP 06, 190 (2015)

Collectivity in Small Systems Part-II : Multi Particle Cumulants

Kishora Nayak

Two and four particles cumulants

$$\langle \langle 2 \rangle \rangle \equiv \langle \langle e^{in(\phi_1 - \phi_2)} \rangle$$

$$\langle \langle 4 \rangle \rangle \equiv \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle$$

$$c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2. \quad v_n\{2\} = \sqrt{c_n\{2\}}$$

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}},$$

$$c_n\{2\} = \langle \langle 2 \rangle \rangle$$

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}},$$

$$v_n\{4\} = \sqrt[4]{-$$

Kishora Nayak

ALICE

9th International Workshop on Multiple Partonic Interactions at the LHC, Shimla, India

13

NISER

Non flow suppression: cumulants with η-gaps

* Results with η -gap: small non-flow effects

 Results with η-gap: strong non-flow at low multiplicity

Kishora Nayak

Comparison of c₂{4} in pp, p-Pb, and Pb-Pb

- Limited statistics for pp collisions: no definitive conclusion about the sign of c₂{4, IΔηI}
- ♦ Negative c_2 {4, $|\Delta \eta l$ } for $N_{ch} > 40$ in Pb-Pb and p-Pb

Summary

Double ridge structures are observed in high multiplicity pp and p-Pb

Identified hadrons v₂ in p-Pb from two particle correlations:

- ✓ Mass ordering at low-p_T
 - Supported by hydrodynamic models
- ✓ Hint of baryon and meson separation at intermediate- p_T
- ✓Approximate NCQ scaling in p-Pb resembles that in Pb-Pb

No definite sign of c₂{4} in pp collisions

- \checkmark Need high statistics data for further investigations
- Stay tuned for more Run 2 results

Thank you

Kishora Nayak

AT AT A STATE OF A STA

Backup

Kishora Nayak

Centrality selection in p-Pb

ALI-PERF-51387

