
Outline

- Introduction to Minimum Bias and Underlying Event
- MB: Identified Charged Hadron Spectra at 13 TeV
- UE Measurement at 13 TeV
- Results and Summary

Minimum Bias (MB) and Underlying Event (UE)

Minimum Bias (MB)

- Very loose trigger conditions.
- Dominated by low p_T QCD processes.
- Sensitive to saturation effects of cross-section and MPI.
- Possibility to understand the different components of particle production.
- improve the modelling of various key ingredients of
- MC hadronic event generators, such as MPI, parton hadronization, and other final-state effects

Measurement of p_T spectra of charged hadrons identified via energy deposition in Si detectors (FSQ-16-004)

Underlying Event (UE)

pp collisions @ LHC

- hard scattering
- softer partonic interactions (MPI)
- initial and final state radiation (ISR and FSR)
- beam beam remnants (BBR)

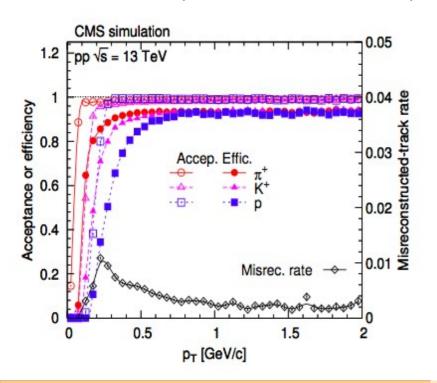
UE: additional activity on top of the hard scattering

Importance of UE

- These processes can't be completely described by perturbative QCD, and require phenomenological models, whose parameters are tuned by means of fits to data.
- Same sign WW production from MPI can mimic final state of same sign dilepton SUSY searches.
- It can affect isolation criteria applied to photons and charged leptons.

Presented for p_T leading track/jet (FSQ-15-007) & Using p_T of dimuon pair (FSQ-16-008)

Identified charged particle spectra (π ,K,p) at 13 TeV



Event Selection

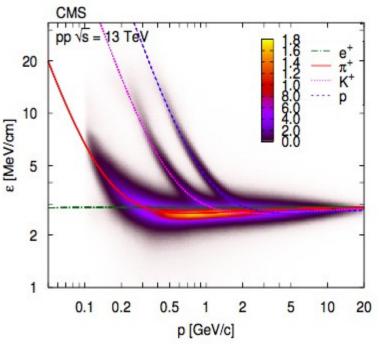
- Zero Bias, in line with previous Minimum Bias analysis
- main goal is to show inelastic spectra and multiplicity dependence
- HF is not used in analysis, but showing traditional (double sided) selection
- in order to compare with previous measurements at lower energies

Minimum Bias Tracking

- Low $p_{\scriptscriptstyle T}$ and low fake rate tracking
- used successfully in previous spectra and multiplicity papers
- Iterative: hits on found tracks and successively removed
- Cluster shape filter is used for both pixels and strips

special tracking algorithms extend reconstruction capabilities down to p_¬ ~ 0.1 GeV

Acceptance: flat (96-98 for $p_{\tau} > 0.4 \text{ GeV}$


Reconstruction eff: 80-90% Mis-reconstructed track rate:

Very small, 1% for

 $p_{-} < 0.2 \text{ GeV}$

Submitted to Physical Review D

- Distributions of ln ε as a function of total momentum p for +ve particles.
- Identified from the energy deposited in the silicon tracker and the reconstructed particle trajectory.

Identified charged particle spectra (π ,K,p) at 13 TeV

arXiv:1706.10194

• Measured :

Submitted to Physical Review D

- p_T spectra, average p_T , ratio of particle yields

• Selection:

-|y| < 1

CMS

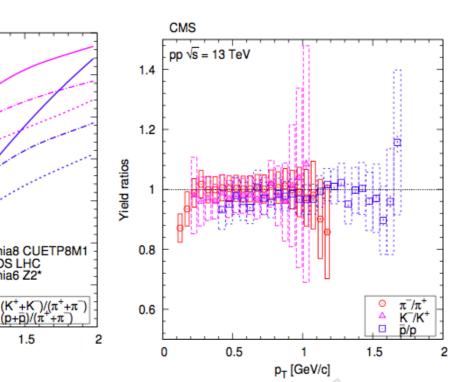
 $pp \sqrt{s} = 13 \text{ TeV}$

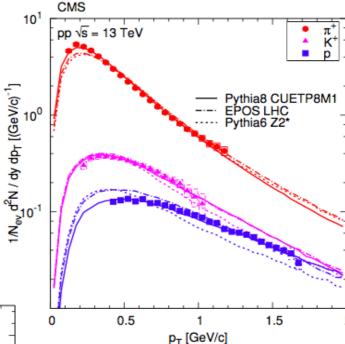
0.35

0.3

0.25

0.2


0.15


0.1

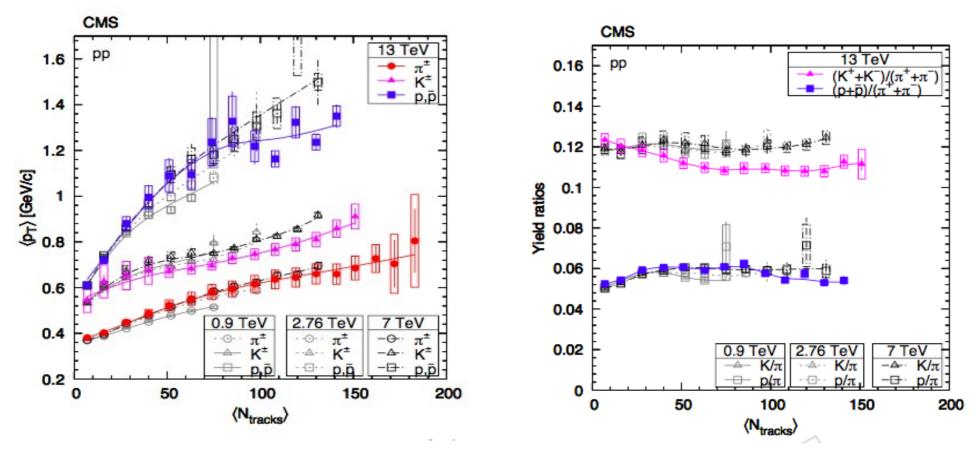
0.05

- K : p < 1.05 GeV
- $-\pi : p < 1.2 \text{ GeV}$
- p : p < 1.7 GeV

- pions are described well by all three generators
- kaons are best modelled by PYTHIA8 and EPOS.
- For protons only PYTHIA8 gives a good description.

- Only PYTHIA8 is able to predict both the K/π and p/π ratios as a function of p_{T}
- The ratios of the yields for oppositely charged particles are close to one (backup), as expected at this center-of-mass energy in the central rapidity region.

p_T [GeV/c]

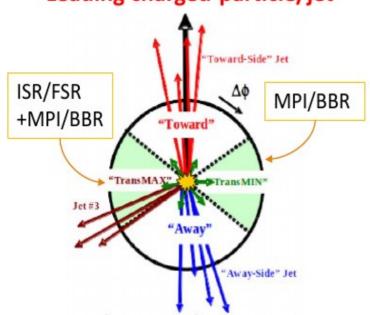

0.5

Identified charged particle spectra (π ,K,p) at 13 TeV

arXiv:1706.10194 Submitted to Physical Review D

Average p_T of identified charged hadrons and ratios of particle yields in the range |y| < 1 as a function of the corrected track multiplicity for $|\eta| < 2.4$, for pp collisions at at $\sqrt{s} = 13$ TeV (filled symbols) and at lower energies (open symbols)

both $\langle pT \rangle$ and yield ratios show only a mild dependence on the center-of-mass energy.



Underlying Event (UE) Observables

Underlying Event study using Leading Track/Jet:

Reference hard direction Leading charged-particle/jet

Spatial Distribution of tracks is categorized by azimuthal separation $\Delta \Phi = \Phi_{\text{track}} - \Phi_{\text{leading track/jet}}$

- 1. $|\Delta \Phi| > 120^{\circ}$ (away)
- 2. $60^{\circ} < |\Delta \Phi| < 120^{\circ}$ (transverse)
- 3. $|\Delta \Phi| < 60^{\circ}$ (towards).

UE observable:

Avg charged particle multiplicity density:

<N_{ch}> / [$\Delta\eta\Delta(\Delta\phi)$] ,

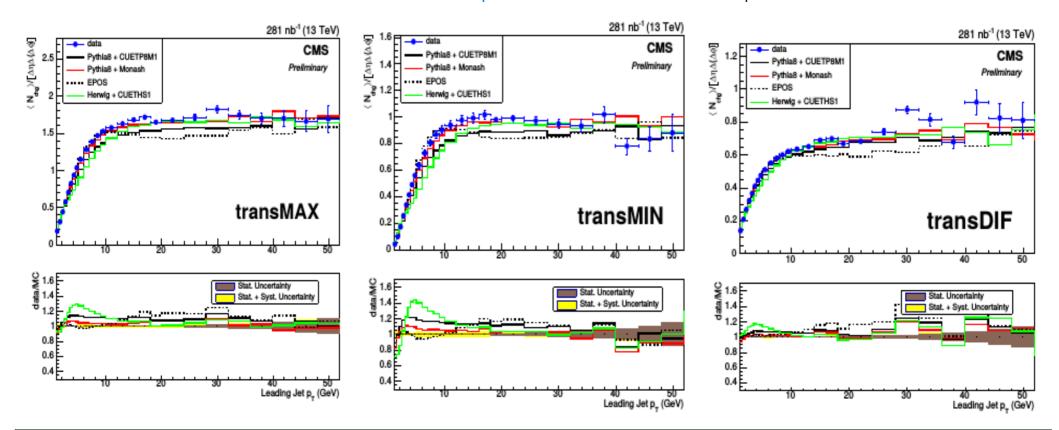
Average Scalar sum of transverse momenta $\langle \Sigma p_{\tau} \rangle / [\Delta \eta \Delta (\Delta \phi)]$

transMAX(TransMIN): activity in maximum (minimum) activity side of transverse region

transAVE: (TransMAX+TransMIN)/2

transDIF: (TransMAX-TransMIN)

Sensitive to ISR/FSR



Underlying event with leading particle and Jet @ 13 TeV

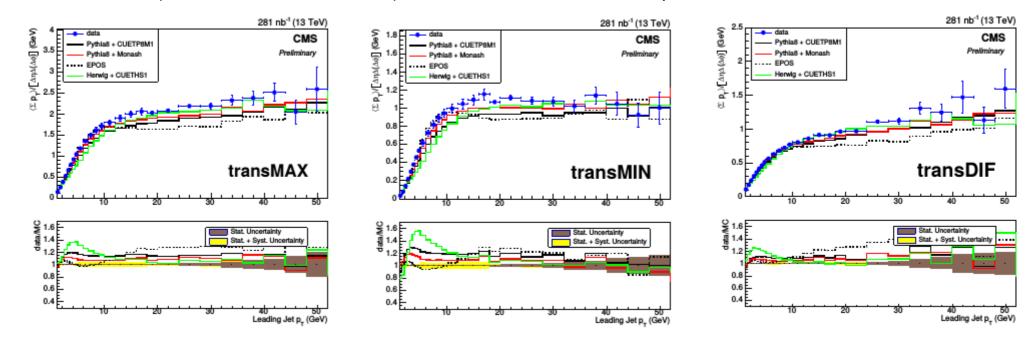
CMS-PAS-FSO-15-007

• Average Particle density vs leading jet p_{τ} for charged particles : $p_{\tau} > 0.5$ GeV and $|\eta| < 2$.

two different regimes:

- At low $p_{\scriptscriptstyle T}$: sharp rise due to increase of the MPI activity.
- At higher p_{τ} : MPI activity saturates, slow increase due to the ISR and FSR contributions.

TransMIN flatter at higher p_{τ} (MPI saturated) than transMAX and transDIF (ISR/FSR increase)



Underlying event with leading particle and Jet @ 13 TeV

CMS-PAS-FSQ-15-007

• Average p_{τ} sum vs leading jet p_{τ} for charged particles – p_{τ} > 0.5 GeV and $|\eta|$ < 2.

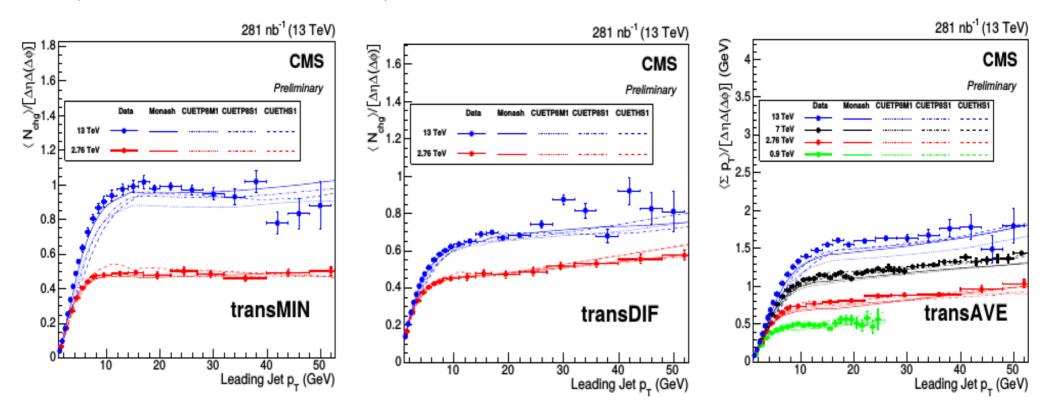
Qualitative behavior described by the simulations:

- Level of agreement is 10-20% in the plateau region.
- Larger difference between models in the low p_⊤ regions.

Data better described by Pythia8 Monash and CUETP8M1

HERWIG + CUETHS1 fails in the low p_{τ} region (lack of diffractive events)

EPOS describes the rising part but fails to describe the plateau.



Underlying event with leading particle and Jet @ 13 TeV

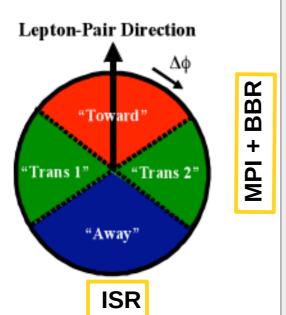
CMS-PAS-FSQ-15-007

• p_T sum density vs leading jet p_T : energy dependence 2.76 TeV \rightarrow 13 TeV

Strong energy dependence well reproduced by the different models

- Increase of the parton densities at smaller momentum fraction.
- transMIN shows a stronger rise than transDIF

MPI activity grows faster with CM energy than activity from ISR and FSR.

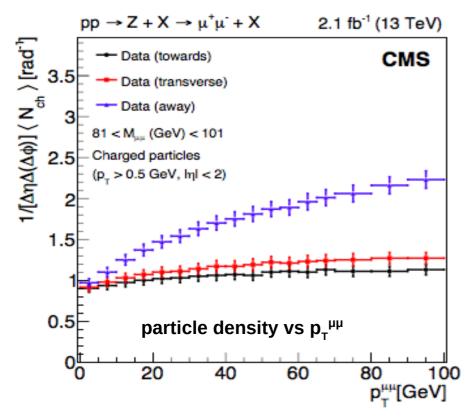

BBR

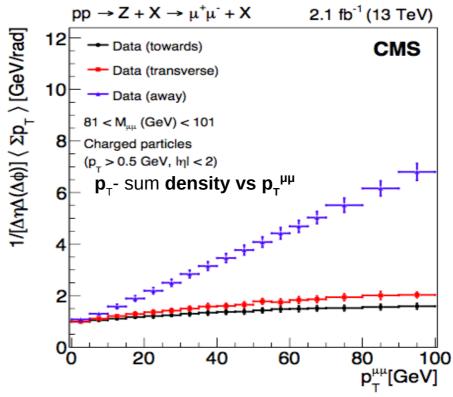
MPI +

Underlying Event (UE) Observables

Underlying event using Drell-Yan process with muonic final state:

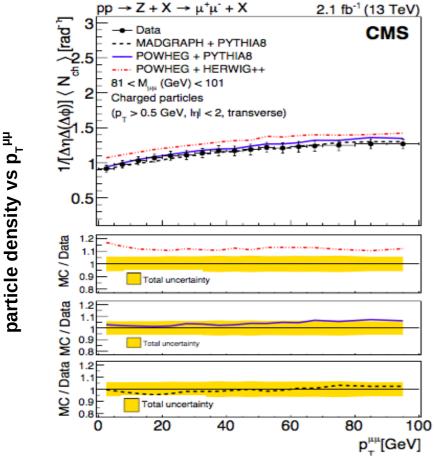
- 2 muons from Z leptonic decay with $p_T > 10 \& 20 \text{ GeV}$, $|\eta| < 2.4 \& 81 < M_{_{UU}} < 101 \text{ GeV}$
- charged particles with $p_{T} > 0.5$ GeV & $|\eta| < 2$ in the towards, transverse and away region.
- Test the process universality of the underlying event activity.
- No Final-State Radiation → more direct access to MPI and Initial-State Radiation
- Test the universality of the tunes interfaced with different event generators.

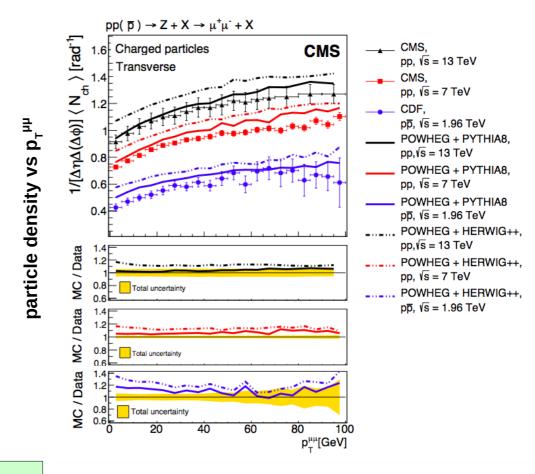

ArXiv:1711.04299 (submitted to JHEP)


These observables are studied as a function of $p_T^{\mu\mu}$ in narrow mass window (around Z resonance i.e 81-101 GeV), in away, towards and transverse regions.

Results

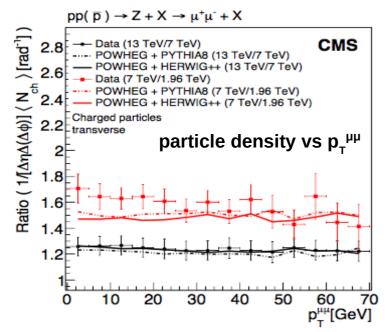
- Away: fast rise in UE activity due to recoiling hadronic activity (ISR).
- Towards and transverse: slow growth (due to large spatial separation).
- All activities equal as $p_T^{\mu\mu} \rightarrow 0$: difference in UE activity for different regions is due to varying radiation contribution.

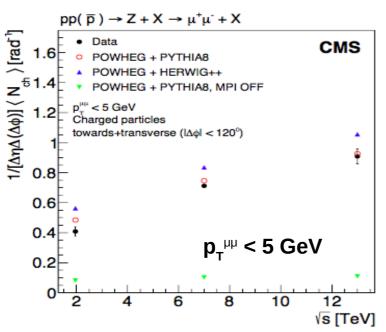

 ArXiv:1711.04299 (submitted to JHEP)
- UE activity does not start from zero due to hard scale set by event around Z resonance (MPI activity already saturated)



UE in **DY** – avg particle density vs dimuon p_T

ArXiv:1711.04299 (submitted to JHEP)




- POWHEG + HERWIG++ EE5c: overestimates UE activity by 10-15% in all regions
- POWHEG + PHYTHIA8 CUETP8M1: describes the data within 5%
- MADGRAPH + PYTHIA8 CUETP8M1: gives the best description

- 1.96 TeV → 7 TeV → 13 TeV:
- POWHEG + HERWIG++ EE5c: overestimates data by 40 to 10%.
- POWHEG + PHYTHIA 8 CUETP8M1: describes data within 10 to 5%.

UE in **DY**: activity at different energies

- To quantify increase in UE : ratios are calulated $(UE)_{13(7) \text{ TeV}}$ / $(UE \text{ activity})_{7(1.96) \text{ TeV}}$ for both simulation and data.
- 25-30% rise from 7 to 13 TeV, models in good agreement.
- 60-80% rise from 1.96 TeV to 7 TeV, models predict lower increase particularly at lower p_T
- At low dimuon p_T : underlying event activity dominated by MPI contributions.
- Average particle and energy density for dimuon $\textbf{p}_{\scriptscriptstyle T}$ as a function of CM energy in the combined towards and transverse region.

ArXiv:1711.04299 (submitted to JHEP)

- POWHEG + PYTHIA8 Without MPI : contribution from radiation very small.
- Increase of MPI activity well reproduced by POWHEG + PYTHIA8.
- Overestimated by POWHEG + HERWIG++.

Conclusion

- The yields and spectra of identified hadrons for laboratory rapidity |y| < 1 have been studied as a function of the event charged particle multiplicity in the range $|\eta| < 2.4$.
- The PYTHIA8 CUETP8M1 event generator reproduces most features of the measured distributions; EPOS LHC also gives a satisfactory description of several aspects of the data.
- As observed in lower energy data, the average $p_{\scriptscriptstyle T}$ and the ratios of particle yields are strongly correlated with the event particle multiplicity at LHC energies.
- Measurement of UE activity at 13 TeV using inclusive Z Boson event and leading jet/track at 13 TeV is presented.
- Underlying event measurements
 - Probe the dynamics of hadron production with increasing precision.
- Sensitivity to the parton densities at small x and small scale,
- Various observables enable to measure these different components independently from each other.
- The Results are valuable inputs to further constrain phenomenological models used to describe the particle production at low $p_{\scriptscriptstyle T}$

CMS Publications

- Measurement of charged pion, kaon, and proton production in proton-proton collisions at √s= 13 TeV, arXiv:1706.10194
- Underlying Event Measurements with Leading Particles and Jets in protonproton collisions at \sqrt{s} = 13 TeV, CMS-PAS-FSQ-15-007.
- Measurement of the underlying event using the Drell-Yan process in protonproton collisions at $\sqrt{s} = 13$ TeV, ArXiv:1711.04299