DPS Measurements at CMS

Ankita Mehta

(on behalf of the CMS Collaboration)

Panjab University Chandigarh

9th International Workshop on Multiple Partonic Interactions at the LHC, Shimla, India

13 December 2017

Outline

Outline

Double-Parton Scattering

- Simultaneous occurring of two hard partonic interactions in a single pp collision →Double-Parton Scattering (DPS)
- Large parton densities and small-x values @ LHC \rightarrow Substantial probability for the manifestation of DPS (hardest instance of MPI)

• $\sigma_{XY}^{DPS} = \frac{m\sigma_X\sigma_Y}{2\sigma_{off}}$, m = 1 (2) for identical (different) processes

- $\sigma_{\rm eff} \rightarrow$ Effective cross section parameter of DPS
- Expected to be independent of process type & collision energy

Importance of DPS processes

- Could provide information about hadron structure in transverse plane
- Understanding of background contributions to interesting SM & BSM processes

Same-sign WW production via DPS

Performed Measurements

- Measurement of double parton scattering in same-sign WW production in pp collisions at $\sqrt{s} = 13$ TeV with the CMS experiment (CMS-PAS-FSQ-16-009)
- Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $\sqrt{s} = 8$ TeV (https://arxiv.org/abs/1712.02280)

Ankita Mehta

Analysis Strategy

Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at $\sqrt{s} = 8$ TeV

First results on DPS measurements @ 8TeV with 19.7 fb^{-1} of pp collisions data

Event Selection

- 2 same-sign leptons ($\mu\mu$ or $e\mu$) with $p_T(l_{1/2}) > 10/20$ GeV
- $E_{\rm T}^{\rm miss} > 20$ GeV; $m_{\rm ll} > 20$ GeV; Veto on additional leptons
- $\mu\mu$ final state
 - $m_{\mu\mu} \notin [75,105] \text{ GeV}; |\vec{p}_{T_{\mu_1}}| + |\vec{p}_{T_{\mu_2}}| > 45 \text{ GeV}$
- $e\mu$ final state
 - No b-tagged jets with $p_T > 30$ GeV & $|\eta| < 2.1$

Background Processes

- Data driven estimate of QCD multijets, W+jets & semileptonic $t\bar{t}$ events
- Diboson (WZ, ZZ, WW) processes estimated from MC
- $W\gamma^{(*)}$ estimated from MC with normalization derived from data
- DY process estimated from MC (negligible for $\mu\mu$ final state)

Multivariate Analysis: Boosted Decision Trees (BDT)

Training & testing samples

- Signal: DPS OS events for training & SS events from MC sample for testing
- Background: WZ, Fake-fake & Prompt-Fake events (both OS & SS)

Results

Ankita Mehta

MPI@LHC2017, Shimla, India

13 December 2017

8 / 12

Measurement of double parton scattering in same-sign WW production in pp collisions at $\sqrt{s} = 13$ TeV with the CMS experiment

Event Selection

- 2 same sign leptons ($\mu\mu$ or $e\mu$) with $p_T(l_{1/2}) > 25/20$ GeV
- $E_{\rm T}^{\rm miss} > 15 \,\,{\rm GeV}$
- $N_{\rm jets} < 2 \ (p_{\rm T} > 30 \ {\rm GeV})$
- $N_{bjets} = 0 \ (p_T > 25 \ GeV)$
- $\bullet~$ Veto on additional leptons & hadronically decaying τs

Background Processes

- WZ: Estimated from MC; Shape & normalization uncertainty from 3l control region
- Jet induced backgrounds: Estimated from data; Shape & scale uncertainties from variations in fake rate & MC closure tests
- W γ^* , ZZ, WW, & WWW \rightarrow estimated from MC
- $\bullet~{\rm Z} \rightarrow \tau \tau$ estimated by measuring charge flip probability of electrons

Ankita Mehta

Multivariate Analysis: Boosted Decision Trees (BDT)

Varia	bles Us	ed																	
varie	10100 00	uu -																	
•	$p_{\mathrm{T}l_{1,2}}$																		Ľ
•	$p_{\mathrm{T}l_1l_2}$																		ŀ
٥	$p_{\mathrm{T}}^{\mathrm{miss}}$																		
٠	$\eta_1 \times \eta_2$	2																	
٠	$ \eta_1 + \eta_2 $	2																	Ľ
٩	$\mathbf{M}_{\mathrm{T2}}^{\mathrm{ll}}$	·																	Ľ
۲	$m_{\mathrm{T}}(l_{1},$	$p_{\mathrm{T}}^{\mathrm{miss}})$																	Ľ
۹	$m_{T}(l_{1},$	$l_2)$																	Ľ
۰	$\Delta \phi(l_1,$	$l_2)$																	Ŀ
۹	$\Delta \phi(l_2,$	$p_{\mathrm{T}}^{\mathrm{miss}})$																	ŀ
۹	$\Delta \phi(l_1 l$	$_{2}, l_{2})$																	ŀ
_																			_
Training & Testing Samples														h.					
• Signal: DPS events from MC sample																			
• Background: WZ events from MC sample															Ľ				
														-					
	Ankita	a Meht	a		Μ	IPI@I	LHC2	017, S	himla	i, In	dia	13	Dec	emt	ber 1	2017	10	/ 12	

Results-I

Ankita Mehta

11 / 12

Summary

- DPS measurements → Important to understand partonic structure of hadrons & for new physics searches @ LHC
- Various channels being probed to perform DPS measurement at LHC
- Same-sign WW emerges as a golden channel to search for DPS
- More data @ 13Tev \rightarrow Possible to see first DPS signal in same-sign WW events

σ_{off} extractions (vector boson final states)

12 / 12