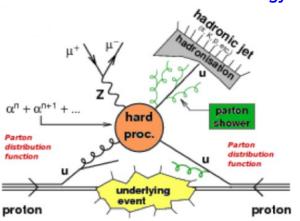
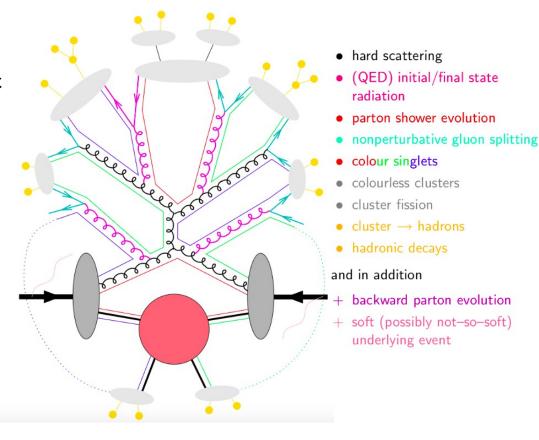

Very forward jet, Mueller Navelet jets with section 30 det gap jet measurements

Salim CERCI

Adiyaman University
On behalf of the CMS Collaboration

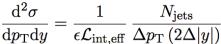
MPI2017: 9th International Workshop on Multiple Partonic Interactions at the LHC 11/12/2017

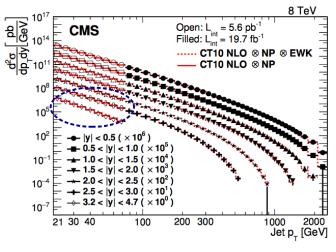

Outline

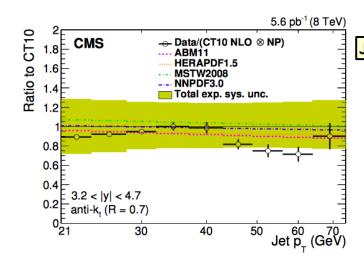

- Motivation
- Overview of most recent forward jet measurements by CMS
 - Inclusive forward jets
 - Very forward jets
 - Mueller-Navelet jets
 - Jet-gap-jet
- Summary

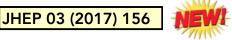
Motivation

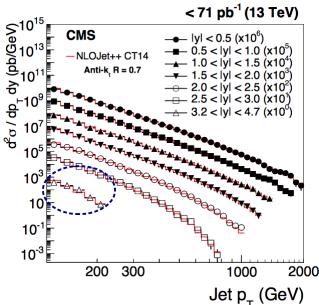
Jets:

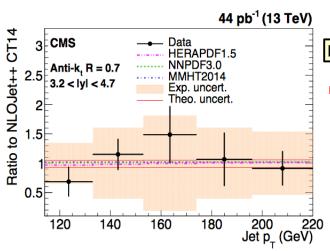

- Key component to extend our understanding of the Standard Model physics
- Invaluable objects to probe QCD
 - soft QCD low p_⊥ multiparton scattering, fragmentation, underlying event, etc.
 - ▶ hard QCD high p₊: PDFs, strong coupling, perturbation theory, ISR & FSR, parton shower, (subjets)
- Measure and understand the main background to many new physics searches.
- Check SM predictions at high energy scales.
- Abundantly produced at hadron colliders like LHC
 - LHC is a jet factory!
- Jet and photon cross section measurements are also important for validating the detector/trigger/reconstruction chain, and are "legacy" measurements for the future ∆ among the first measurements at each new energy

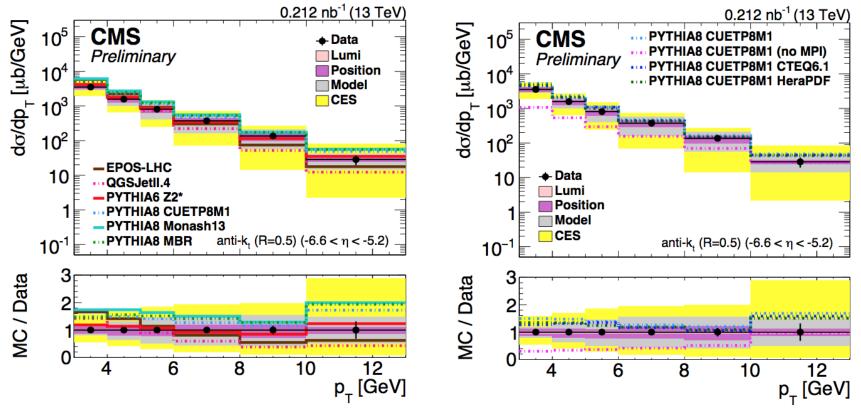





Inclusive Forward Jet Cross Sections @ 8 and 13 TeV


- Jet p₊ range measured: [74, 2500] GeV for |y| < 3 and [21, 74] GeV for 3.2 < |y| < 4.7
- Good agreement over the whole p₊ and y range for fixed-order calculations corrected for NP and EW effects
- Comparison with NLO QCD using several PDFs (two representative rapidity bins shown)



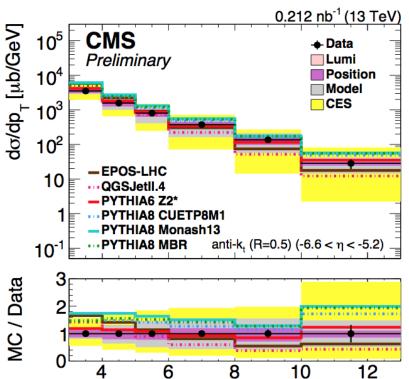


EPJ C 76 (2016) 451

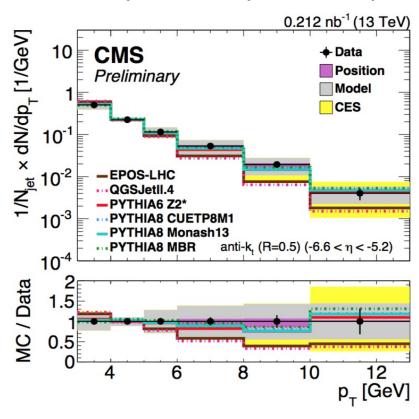
Jet p_T range measured:
 [74, 2500] GeV for |y| < 4.7

Very forward inclusive jets cross section @ 13 TeV

CMS PAS-FSQ-16-003



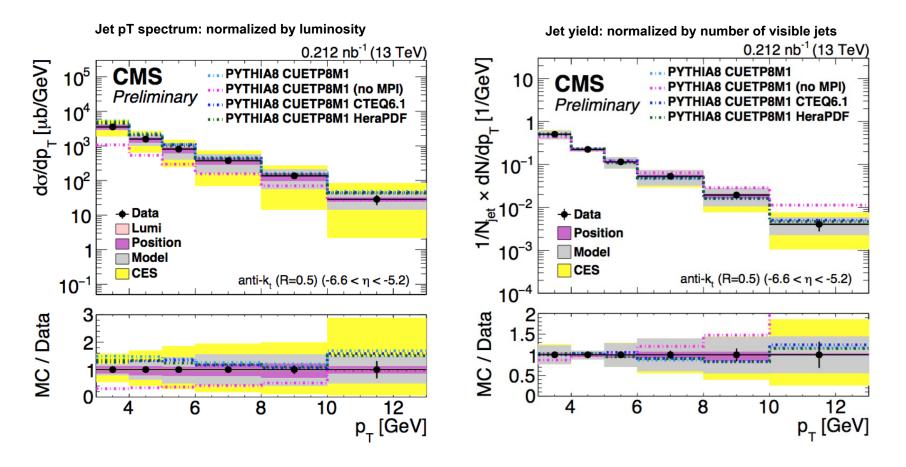
- Dominant uncertainty: jet energy scale (5 70%) for normalized distribution
- All models show agreement with data within the unc.
- Overestimation of data by PYTHIA8 tunes
- EPOS-LHC and QGSJet have tendency of decrease with increasing p₊
- Measurement sensitive to MPI in the very forward region


Very forward inclusive jets cross section @ 13 TeV (II)

CMS PAS-FSQ-16-003

Jet pT spectrum: normalized by luminosity

Jet yield: normalized by number of visible jets


- Dominant unc. source: CASTOR energy scale (17%)
- All models show agreement with data within the unc.
- Overestimation of data by PYTHIA8 tunes
- EPOS-LHC and QGSJet have tendency of decrease with increasing p_T

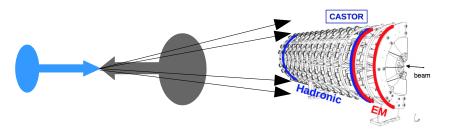
p_T [GeV]

Very forward inclusive jets cross section @ 13 TeV (III)

CMS PAS-FSQ-16-003

Any sensitivity to multiple partonic interaction (MPI) or parton density function (PDF)?

- Moderate sensitivity to the underlying PDF set of the model
- Very sensitive to MPI


Very forward jets in p+Pb @ 5.02 TeV

Motivation:

- At very low-x transition from dilute to dense medium.
 - Non-linear QCD behaviour expected
- ▶ Gluon density in heavy ion larger than proton
- More perturbative saturation scale (Q_s) compared to saturation scale in pp collisions.
- ▶ Sensitivity to non-DGLAP (BFKL?) evolution scheme.

Pb+p (ion towards CASTOR) CASTOR beam Hadronic

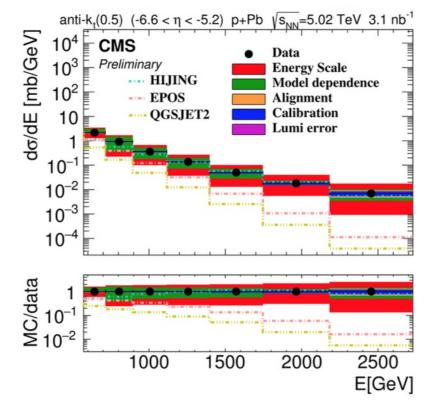
p+Pb (proton towards CASTOR)

Analysis strategy:

CMS PAS FSQ-17-001

Use proton lead collisions data in 2013.

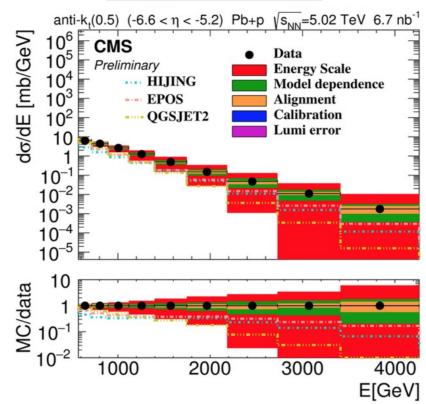
- p+Pb: proton towards CASTOR.
- Pb+p: ion to CASTOR
- non-diffractive, hadronic event selection
- **▶** Event selection
 - Online: require beams in CMS IP & a track with p_T ≥ 0.4
 GeV (|n| ≤ 2.5)
 - Offline: require $E_{tower} > 4$ GeV in HF+ and HF- (3 $\leq |\eta| \leq 5.2$)
 - Measure jet energy in CASTOR (-6.6 < η < -5.2)
- ▶ All results shown in the lab frame!


Observables:

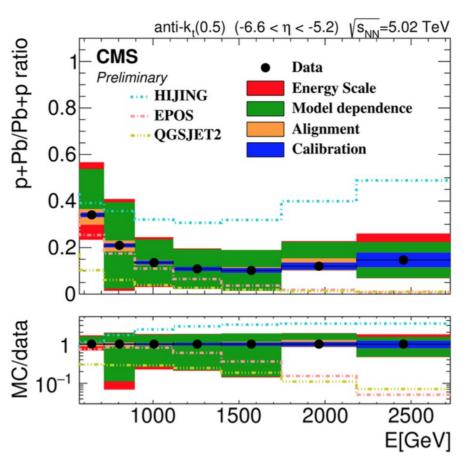
- ightharpoonup d σ / dE vs. jet energy in p+Pb and Pb+p.
- Ratio of $\sigma(p+Pb) / \sigma(Pb+p)$

8/17

Jet energy cross section for p+Pb and Pb+p

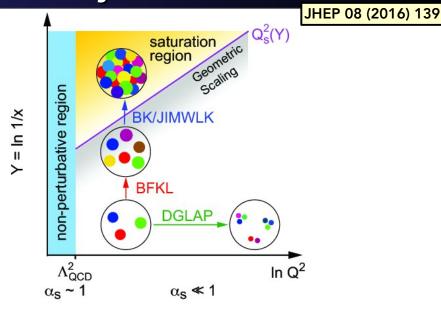


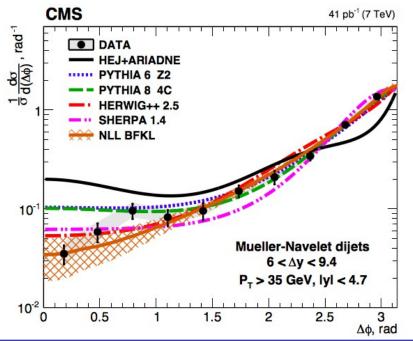
- p+Pb spectrum is well described by HIJING
- EPOS-LHC and QGSJETII-04 underestimate the data progressively with increasing jet energies.



- All models underestimate the data @ lower energy bins in Pb+p spectrum
- From ~1.2 TeV onwards, all models are in agreement with the data
- Energy scale uncertainty is the dominant uncertainty for both p+Pb and Pb+p spectra.

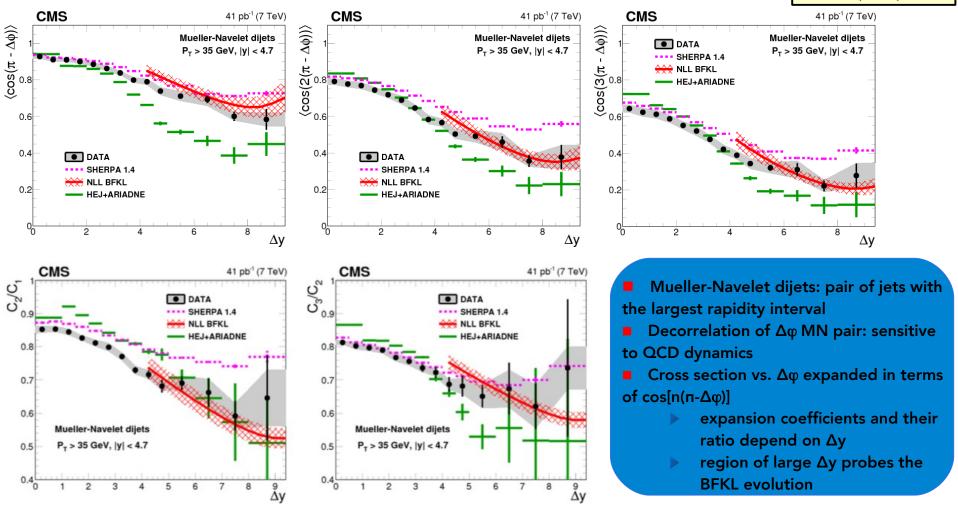
Ratio: $\sigma(p+Pb) / \sigma(Pb+p)$


- Energy scale uncertainty largely cancels out
- None of the models describe the data on the whole range.
 - HIJING describes the shape well but is off in normalisation (due to the poor Pb+p description)
- EPOS-LHC and QGSJETII-04 significantly fail to describe the ratio at high energies


■ Energy scale uncertainty is the dominant uncertainty for both p+Pb and Pb+p spectra.

Decorrelation of forward jets at 7 TeV

- Approaches to higher-order calculations:
 - DGLAP approach: resummation in terms of ln(Q²)
 - **BFKL** approach: resummation in terms of ln(1/x)


- Most forward and most backward jets with $p_{\tau} > 35 \text{ GeV}$
- Results given for up to |∆y| = 9.4
- Compared to predictions
 - DGLAP-based LO MCs
 - ▶ HEJ: LL BFKL-based MC
 - NLL BFKL prediction
- Angular variables also studied as a function of Δy

Mueller-Navelet dijet azimuthal decorrelations

JHEP 08 (2016) 139

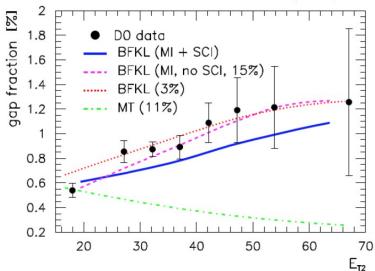

- Good data-theory agreement: NLL BFKL analytical calculations at large Δy
- BFKL NLL calculations, parton level (small effects from hadronization) (JHEP 1305(2013) 096) sensitivity to MPI and

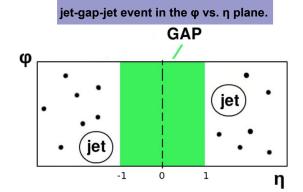
angular ordering

$$\left[rac{1}{\sigma}rac{d\sigma}{d(\Delta\phi)}(\Delta y, p_{ ext{Tmin}}) = rac{1}{2\pi}igg[1 + 2\sum_{n=1}^{\infty}C_n(\Delta y, p_{ ext{Tmin}})\cdot cos(n(\pi-\Delta\phi))igg]$$

Dijet events with a large rapidity gap (jet-gap-jet events)

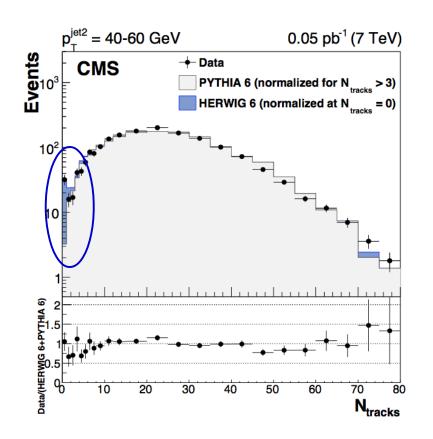
- Jets separated by a large rapidity gap
 - gluon or quark exchange
 - additional particle emissions between jets, **DGLAP** (**k**_r **ordered**)
 - absence of particles produced between the jets (color singlet exchange, CSE),
 BFKL dynamics (ordering in x), rescattering processes
- Events with gaps ~1% observed at Tevatron (CDF, D0) and HERA

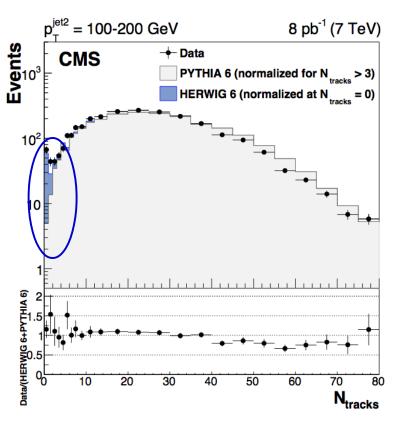



- Analysis strategy:
- Signature: two leading jets with no particles in between
- Jets with p₊ > 40 GeV, 1.5 < |y| < 4.7
- Gap particles: |η| < 1, p₊ > 0.2 GeV

arXiv:1710.02586
Submitted to EPJC

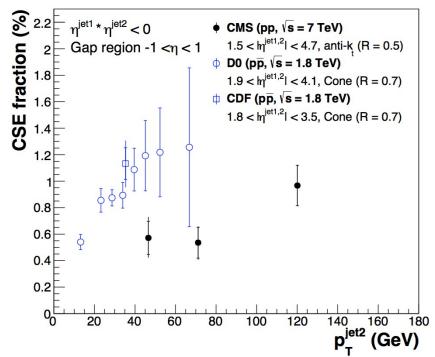
D0 data, compared to Enberg, Ingelman, Motyka model (NLL BFKL + MPI+SCI) [PLB 524 (2002) 273]

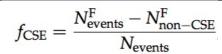



Jet-gap-jet events: number of tracks

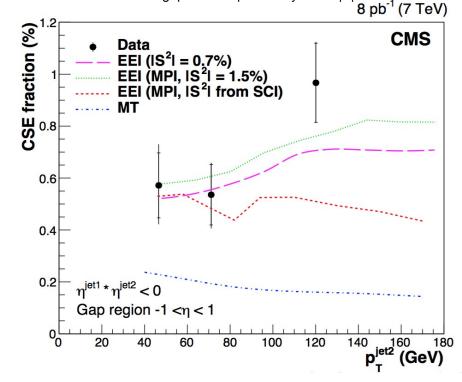
Number of central tracks between the two leading jets in events with p_{τ}^{jet2} = 40-60 GeV (left) and 100-200 GeV (right)

arXiv:1710.02586
Submitted to EPJC



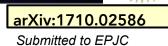

- Large excess of gap events over PYTHIA6 prediction (LO DGLAP),
 - this excess well described by HERWIG 6 (LL-BFKL, Mueller-Tang model)

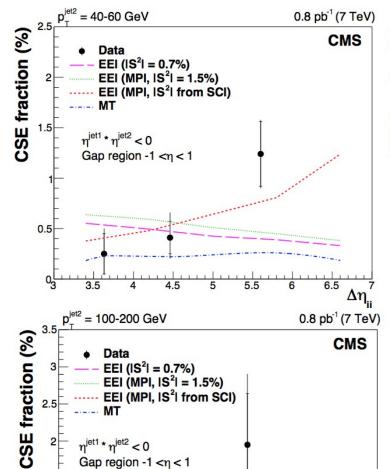
Jet-gap-jet events: p₋


- In order to quantify the contribution from CSE events, CSE fraction
 - N^F_{events}: the number of events in the first bins of the multiplicity distribution
 - N^F_{non-CSE}: the estimated number of events in these bins originating from non-CSE events
 - Nevents: the total number of events considered
- **f**_{CSE} as a function of $\mathbf{p}_{T}^{\mathrm{jet2}}$ at \sqrt{s} = 7 TeV, compared to D0 and CDF

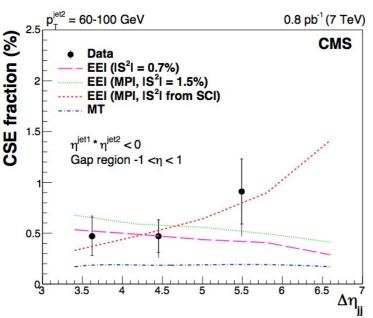
arXiv:1710.02586
Submitted to EPJC

f_{cse} as a function of p_T^{jet2} at √s = 7 TeV, compared to Mueller and Tang (MT) model Estedt, Enberg, and Ingelman (EEI) model with 3 different treatments of the gap survival probability factor |S|²




- A factor ~2 suppression w.r.t. to D0 and CDF data
- \blacksquare At both collision energies $\textbf{f}_{\texttt{cse}}$ seems to increase with p_{T}^{jet2}
- The decrease of **f**_{cse} with increasing energy: stronger contribution from rescattering processes where the interactions between spectator partons destroy the rapidity gap
- The MT prediction does not reproduce the increase of f_{CSE}
- BFKL cross section is scaled $|S|^2 = 0.7\%$

Jet-gap-jet events: GAP/CSE fraction


f_{CSE} as a function of eta in three p_T^{jet2} ranges

1.5

0.5

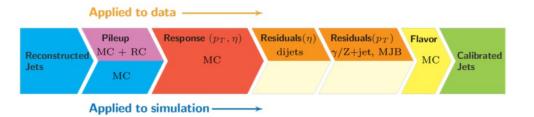
- The NLL BFKL calculations of EEI, with three different implementations of the soft rescattering processes, describe many features of the data,
- But none of the implementations is able to simultaneously describe all the features of the measurement.

6.5

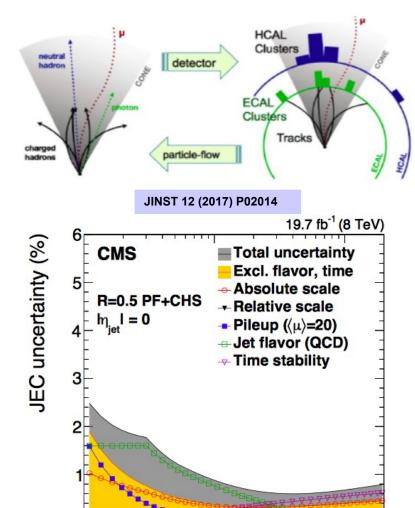
Summary

- Many interesting results from CMS, reaching new levels of precision and exploring new regions of phase space.
 - wide range of jet measurements at various collision energies, improving our understanding of QCD
 - excellent understanding of the jet reconstruction and energy calibration and together with the high data quality make jet measurements precision physics
- Current results on very forward jets are highly sensitive to UE tuning; weak dependence on PDF
 - No clear sign for saturation yet (p+Pb results need to be further interpreted)
- Mueller-Navelet dijet decorrelations analytical NLL BFKL calculation agrees with data
 - ▶ Higher collision energies may be more decisive
- BFKL color singlet exchange measured for the first time at the LHC
 - ▶ LO DGLAP does not reproduce dijet events with no particles between them
 - CSE fraction (0.5-1%) rises with p_→ but decreases with collision energy

Thank you for your attention!


BACKUP

- •The gap fractions are plotted relative to the standard LO QCD dijet production rates, calculated with PYTHIA 6 (using tune Z2* for MT, and the default settings with color reconnection features turned off for EEI).
- •The MT model prediction is based on the LL BFKL evolution in the asymptotic limit of large rapidity separations between the jets, and is obtained with HERWIG 6 for pure jet-gap-jet events (no simulation of MPI).


•

Jet Reconstruction and Jet Calibration @ CMS

- A jet in CMS is seen as a bunch of particles in the detector
- Jet reconstruction procedure: input objects (e.g. particles) apply jet finding algorithm by jet reconstruction
- Anti-k, algorithm (infrared and collinear safe) is used
- Particle Flow (PF) Jets: Clustering of Particle Flow candidates constructed by combining information from all sub-detector systems.
- Factorized Jet Energy Correction approach in CMS:

- ► Pileup → corrects for "offset" energy
- ▶ Response \rightarrow Make jet response flat on η and p₊
- ▶ Data/MC residuals → residual differences between data & MC
- ► Flavor (optional) → corrects dependence on jet flavor

1000