

CMS Underlying Event and Double Parton Scattering Tunes

December 14, 2017

Manisha Lohan (On behalf of CMS Collaboration) Panjab University, Chandigarh (India)

MPI@LHC 2017 Hotel Peterhoff, Shimla (India) December 11 – 15, 2017

Underlying Event & Double Parton Scattering

Underlying Event (UE) : Anything that does not originate from hard scatter outgoing partons.

Components of UE :

- Initial State Radiation (ISR).
- Final State Radiation (FSR).
- Multiple Parton Interactions (MPI).
- Beam Beam Remnants (BBR).

Importance of UE :

- Better modeling of MC simulation.
- To probe hadron production.

Double Parton Scattering (DPS) : Two hard collisions per pp interaction.

UE Measurements

Observables : Average charged particle multiplicity ($\langle N_{ch} \rangle$) and average scalar sum of p_{τ} of the charged particles ($\langle \Sigma p_{\tau} \rangle$).

Regions of Measurements

- Towards : $|\Delta \Phi| < 60^\circ$
 - $\Delta \Phi$ (the leading object, charged particle)
- Away Region : $|\Delta \Phi| > 120^{\circ}$
- Transverse : $60^{\circ} < |\Delta \Phi| < 120^{\circ}$
 - TransMax : Maximum value of UE observable.
 - TransMin : Minimum value of UE observable.

UE measurements at CMS experiment :

- Leading Charged Particles @ 13 TeV CMS-PAS-FSQ-15-007.
- Leading Jets @ 13 TeV CMS-PAS-FSQ-15-007.
- Drell-Yan Events @ 13 TeV CMS-PAS-FSQ-16-008, arxiv:1711.04299v1 [hep-ex].
- ✓ ttbar Events @ 13 TeV CMS-PAS-TOP-15-017.

Results of UE Measurements

Performance of Pythia8 Old UE Tunes

EPJ C 76 (2016) 155

Tune : Specified set of parameters adjusted to better fit the data.

Requires tuning.

MPI@LHC 2017

How Tuning is Done?

Tuning : The tuning is performed by minimizing a function, χ^2 .

$$\chi^{2}(p) = [x - \mu(p)]^{T} C^{-1} [x - \mu(p)]$$

- $\checkmark X \rightarrow Data values$
- ~ μ (p) \rightarrow MC prediction for parameter, p.
- \sim C \rightarrow Covariance Matrix.

Pythia8 Tuning

- By fitting UE data i.e. Charged-particle and energy densities in TransMIN and TransMAX regions vs leading charged particle p_{τ} at various energies, charged particle η distribution (dN/dη vs η).
- Refine tunes CUETP8M1 (Pythia8), CUETP8S1 (Pythia8), CUETP8Hpp etc. using Monash as a baseline.
- With different PDFs i.e. CTEQ6L1, HERAPDF etc.

Top Quark specific Pythia8 Tune – CUETP8M2T4

Motivation : To describe high jet multiplicity events in ttbar events.

Sensitivity to Tuning Parameters CMS-PAS-TOP-16-021

- The impact of the tuning parameters on N $_{_{jets}}$ and leading additional jet $p_{_{T}}$ can be quantified via the parameter, S.

bin value for a parameter value pand p_c is a reference parameter point.

- $\sim \alpha_{c}^{ISR}$ impacts mostly the higher jet multiplicities.
- \sim h _{damp} has a high influence on the ratio of 2-jet to 3-jet events and the leading additional jet p_T.

Manisha Lohan

MPI@LHC 2017

Performance of the New Pythia8 Tune with Top Quark Data

- Powheg + Pythia8 (CUETP8M2T4) describes the data very well.
- MG5_aMC@NLO [MLM] and MG5_aMC@NLO [FxFx] + Pythia8 with the new tune do not describe the top quark data perfectly.
- $_{\prime}\,$ ttbar cross-sections are sensitive to shower scales and h $_{_{damb}}$ parameter.

CMS-PAS-TOP-16-014

Comparison of UE and DPS Tunes

CMS Tune	$\sigma_{ m eff}(m mb)$ at 7 TeV
CUETP8S1-CTEQ6L1	$27.8^{+1.2}_{-1.3}$
CUETP8S1-HERAPDF1.5LO	$29.1^{+2.2}_{-2.0}$
CUETP8M1	$26.0\substack{+0.6 \\ -0.2}$
CUETHppS1	$15.2\substack{+0.5\\-0.6}$
CDPSTP8S1-4j	$21.3^{+1.2}_{-1.6}$
CDPSTP8S2-4j	$19.0_{-3.0}^{+4.7}$

EPJ C 76 (2016) 155

CMS DPS tunes give value of $\sigma_{eff} \sim 20$ mb but CMS UE tunes give bit higher value in the range of 26 – 29 mb.

 CMS DPS tunes (right) tend to provide good description of data (for DPS sensitive observables) as compared to CMS UE tunes (left).

Summary

- UE activity shows strong growth with increase in centre-ofmass energy.
- Comparison of UE activity has been done in different regions, shows fast rise in away region as compared to towards and transverse regions.
- Top quark specific Pythia8 tune, CUETP8M2T4 along with Powheg describes the UE data very well.
- CMS UE tunes do not describe the data as well as done by CMS DPS tunes for DPS sensitive observables.
- Results of ongoing analyses which requires UE modeling, can provide important input for tuning.

Thank you!