QCD Monte-Carlo Model Tuning Studies with CMS Data at 13 TeV

Deniz SUNAR CERCI

Adiyaman University

On behalf of the CMS Collaboration

12th December 2017

Outline

Introduction

- Why Monte Carlo event generators?
- CMS efforts for MC tuning
- Measurements for CMS tunes
- Summary

Why Monte Carlo event generators?

Experiments rely on Monte Carlo event generators (PYTHIA, HERWIG, SHERPA, etc...)

- calculate physical observables
- pileup simulation
- correct detector effects
- apply unfolding
- estimation of background
- optimization of cuts for limit or discovery
- deal with many processes ...
- In order to describe the data parameters used in MC programs need to be adjusted i.e. "tuned"
 - For example parameters used in PYTHIA :
 - Multiple interaction parameters in Pythia
 - Primordial k₊
 - Parton shower
 - Hadronization

$$p_T^0(s) = p_T^{ref}(\frac{s}{s_{ref}})^s$$

extrapolation from lower energy

Width of the gaussian used for modelling the parton primordial k_{τ} inside the proton

Strong coupling value Regularization cut-off Upper scale

Length of fragmentation strings Strange baryon suppression

Why and How MC tuning?

Why:

- Obtain correct description of the data
- Good physics predictions
- Correct evaluation of physics effects

How:

- Choose sensitive observables and corresponding parameters
- Choose parameter ranges
- Use predictions for different parameter choices and interpolation of the MC response
- Look at Data-MC differences and minimize with parameter space
- Avoid from over-tuning!

Underlying Event @ LHC

■ The hard pp-collision at the LHC can be interpreted as a "hard scattering" between partons accompanied by the underlying event (UE).

- UE consists of particles from
 - Beam-Beam Remnants (BBR)
 - Multiple Parton Interactions (MPI)
 - Soft Initial and final state radiation (ISR&FSR)
- UE is essentially semi-hard interaction, with typical scale~1-2 GeV

(to be compared with soft interaction scale of $\Lambda_{\mbox{QCD}}$ ~ 0.2 GeV)

- needs phenomenological models for description
- parameters in the models need adjustments
- **TUNING** of Monte Carlo event generators
- UE observables: TransMAX and TransMIN Charged Particle & PtSum Density
 - TransMIN very sensitive to MPI and BBR
 - TransMAX often contains a 3rd jet in events with hard ISR or FSR.
 - TransDIFF (TransMAX TransMIN) very sensitive to ISR and FSR

$$\begin{split} |\Delta\phi| &< \pi/3 \rightarrow \text{TOWARD region} \\ \pi/3 &< |\Delta\phi| &< 2\pi/3 \rightarrow \text{TRANSVERSE region} \\ |\Delta\phi| &> 2\pi/3 \rightarrow \text{AWAY region} \end{split}$$

CMS UE Tunes: PYTHIA8

- Use CDF and CMS data for the tunes
 - Select the leading charged particle (pTmax)
 - Use charged particles with $|\eta| < 0.8 \& p_{\gamma} > 0.5 GeV$.
- The software used for the tunes RIVET (A. Buckley et al, doi:10.1016/j.cpc.2013.05.021)

PROFESSOR (A. Buckley et al., Eur.Phys.J.C65(2010) 331357)

- Take PYTHIA8 Tune 4C as reference tune then construct two new UE tunes
 - using CTEQ6L1 (CUETPS1-CTEQ6L1)
 - using HERAPDF1.5LO (CUETP8S1-HERAPDF1.5LO)
 - varying the four parameters within the Tuning Range

PYTHIA8 Parameter	Tuning Range	Tune 4C (CTEQ6L1)	CUETP8S1 (CTEQ6L1)	CUETP8S1 (HERAPDF1.5LO)
MultipartonInteractions:pT0Ref [GeV]	1.0 - 3.0	2.085	2.101	2.000
MultipartonInteractions:ecmPow	0.0 - 0.4	0.19	0.211	0.250
MultipartonInteractions:expPow	0.4 -10.0	2.0	1.609	1.691
ColourReconnection:range	0.0 - 0.9	1.5	3.313	6.096

By using the output from PYTHIA 8:

- it is possible to predict the σ_{f} value in the tune, defined by the UE parameters
- PROFESSOR gives the eigentunes in order to get the uncertainties of the parameters

CMS UE Tunes: PYTHIA8, PYTHIA6 and HERWIG++

Combines updated fragmentation parameter for NNPDF2.3LO

EPJC 76 (2016) 155)

- NNPDF2.3LO has a gluon distribution @ small-x different than CTEQ6L1 & HERAPDF1.5LO
- Affecting predictions especially in the forward region

New tune PYTHIA8 CUETP8M1

- using parameters of Monash Tune
- Fitting two MPI energy dependence

parameters to UE data @ s = 0.9, 1.96&7 TeV

Two new PYTHIA6 UE tunes are constructed

- Starting with Tune Z2^{*}lep parameters,
- Using CTEQ6L1 (CUETP6S1-CTEQ6L1)
- Using HERAPDF1.5LO (CUETP6S1-HERAPDF1.5LO)
- Not only MPI energy-dependence parameters but
 - the core-matter fraction PARP(83),
 - color reconnection (CR) strength PARP(78),
 - CR suppression PARP(77) are also varied.

New HERWIG++ UE tune, CUETHppS1

- obtained varying four parameters in table.
- set MPI cut-off pT0 and ref. energy to Tune UE-EE-5C
- vary MPI extrap. parameter

PYTHIA8 Parameter	Tuning Range	Monash	CUETP8M1
PDF	-	NNPDF2.3LO	NNPDF2.3LO
MultipartonInteractions:pT0Ref [GeV]	1.0 - 3.0	2.280	2.402
MultipartonInteractions:ecmPow	0.0 - 0.4	0.215	0.252
MultipartonInteractions:expPow	-	1.85	1.6^{*}
ColourReconnection:range	-	1.80	1.80**
MultipartonInteractions:ecmRef [GeV]	-	7000	7000**

HERWIG++ Parameter	Tuning Range	UE-EE-5C	CUETHppS1
PDF	-	CTEQ6L1	CTEQ6L1
MPIHandler:Power	0.1 - 0.5	0.33	0.371
RemnantDecayer:colourDisrupt	0.1 - 0.9	0.8	0.628
MPIHandler:InvRadius [GeV ²]	0.5 - 2.7	2.30	2.255
Colour Reconnector: Reconnection Probability	0.1 - 0.9	0.49	0.528

CMS DPS Tunes

EPJC 76 (2016) 155

- We determined the MPI parameters by fitting to observables which involve correlations among outgoing objects in hadron collisions and sensitive to DPS
- The different kinematical configuration can be exploited to discriminate the two processes using the observables:

$$\begin{split} \Delta S &= \arccos\left(\frac{\vec{p}_{T}(object_{1}) \cdot \vec{p}_{T}(object_{2})}{|\vec{p}_{T}(object_{1})| \times |\vec{p}_{T}(object_{2})|}\right)\\ \Delta^{rel} p_{T} &= \frac{|\vec{p}_{T}^{jet_{1}} + \vec{p}_{T}^{jet_{2}}|}{|\vec{p}_{T}^{jet_{1}}| + |\vec{p}_{T}^{jet_{2}}|},\\ object_{:} \text{ hard-jet pair}\\ object_{2}^{:} \text{ soft-jet pair} \end{split}$$

- Study of QCD evolution in W+2j & 4-jet production scenario
 - One of the two jet pairs is emitted by the hard scattering
 - Hard radiation can produce softer jets

Studies of SPS and DPS contributions performed with PYTHIA8 generator tune 4C:

- MPI contribution switched off for SPS (CDPSTP8S1-Wj)
- Two hard scatterings @ parton level forced to happen w/o PS (CDPSTP8S2-Wj)
- Compatible with the value measured by CMS using the template method

 $\sigma_{_{eff}} = 20.6 \pm 0.8 \text{ (stat)} \pm 6.6 \text{ (sys) mb}$

PYTHIA Parameter	TUNE 4C	CDPSTP8S1-4j	CDPSTP8S2-4j
PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1
Predicted $\sigma_{\rm eff}$ (in mb)	30.3	$21.3^{+1.2}_{-1.6}$	$19.0\substack{+4.7 \\ -3.0}$

CMS efforts for tuning with Run II data

Use similar strategy as done with CMS Run I data

Use UE observables i.e. charged particle multiplicity and p_{τ}^{sum} densities (in the transverse region)

ISR Tune perturbative parameter that determines inclusive event properties (a_s)

- Fit UE & MinBias data at 13 TeV to tune MPI parameters.
- Verify the tune with various data (MinBias, DPS, UE, Drell-Yan, W/Z+jets, ...)

New UE/MB tune at 13 TeV : CUETP8M2T4

CMS-GEN-17-001 paper in preparation

Differential Cross Sections of Top Quark Pair

- Provides a good test of perturbative QCD calculations.
- Gives opportunity to test and tune new MCs (NLO ME + LO PS MC)

POWHEG +HERWIG++ prediction better describes the data than the predictions interfaced with PYTHIA 8, with the exception of the M^{tt} distribution.

CMS TOP-16-007

Jet Multiplicity in Top Quark Pair Events

Predictions overestimate the data for large jet multiplicities, when jets come from the parton shower!

CMS TOP-16-011

Similar effect was observed at 8 TeV [CMS TOP-12-041]

Tuning of α_{s} + h_{damp}

CMS TOP-12-041 C

CMS TOP-16-021

Need for improvement of the jet multiplicity in top events

hdamp : an internal parameter inside the POWHEG ME simulation, which regulates the amount of additional hard radiations

12/17

 α_{s}^{ISR} (M_z) : strong-coupling constant at the mass of the Z boson for ISR

ESULTS:
$$\alpha_S^{ISR} = 0.1108^{+0.0144}_{-0.0142}$$

$$h_{damp} = 1.581^{+0.658}_{-0.585}$$

QCD Monte-Carlo Model Tuning Studies with CMS Data at 13 TeV, MPI2017

R

D. Sunar Cerci

Performance of new CMS Tune

Underlying event at 13 TeV

CMS TOP-16-021

Fixing the $\alpha_{\rm c}^{\rm ISR}$ to 0.1108, we derived a new tune, CUETP8M2T4

- New tune describes UE and MB data at $\sqrt{s} = 13$ TeV simultaneously
- Performs well at $\sqrt{s} = 7$ TeV as well.
- Provides a better description of the plateau
- Single-diffractive enhanced observables and inelastic cross sections not well described
- Comparisons with other processes, UE and DPS observables and tuning for Herwig7

Performance of new CMS Tune (II)

Better description by POWHEG+PYTHIA8

well by simulations – but underestimate the UE evolution from

1.96 to 7 TeV.

Test of higher order PDF positiveness

Motivation:

- to match the PDF in PS and in the ME, and to have LO PDF for MPI to make sure small x-gluon is physical (setting different PDFs in MPI and PS in Pythia not possible yet!)
- to test the effect of using different PDF orders of NNPDF sets in Pythia8 among other parameter variations
 - CP1: NNPDF3.1 LO (alpha_s 0.130)
 - CP2: NNPDF3.1 LO (alpha_s 0.130)
 - CP3: NNPDF3.1 NLO (alpha_s 0.118)
 - CP4: NNPDF3.1 NLO (alpha_s 0.118)
 - CP5: NNPDF3.1 NNLO (alpha_s 0.118)

Test of higher order PDF positiveness

- to test the effect of using different PDF orders of NNPDF sets in Pythia8 among other parameter variations
 - CP1: NNPDF3.1 LO (alpha_s 0.130) CP3: NNPDF3.1 NLO (alpha_s 0.118)
 - CP2: NNPDF3.1 LO (alpha_s 0.130)

CP4: NNPDF3.1 NLO (alpha_s 0.118)

CP5: NNPDF3.1 NNLO (alpha s 0.118)

Summary

- LHC has provided various data samples to understand UE activities
- CMS has a rich tuning program for MC models
 - effort already started with Run I data (EPJC 76 (2016) 155)
 - still ongoing with Run II data
- A CMS top-specific Pythia8 is available
 - \bullet uses a lower value of ISR α_{c} , tuned to jet multiplicities in top events
 - describes UE and MB observables well
- UE/Min-Bias data are being studied tunes with LO, NLO, and NNLO PDF NNPDF3.1 sets.
- **Still more measurements and efforts on-going also intense preparation for the new tuning!**

Thank you for your attention!

BACKUP

UE Observables

TransMAX and TransMIN Charged Particle Density:

- Number of charged particles in the the maximum (minimum) of the two "transverse" regions as defined by the leading charged particle, p_{T}^{max} , divided by the area in η - ϕ space, $1.6 \times 2\pi/6$, averaged over all events with at least one particle with e.g. $p_{T} > 0.5$ GeV/c, $|\eta| < 0.8$.

TransMAX and TransMIN Charged Ptsum Density:

- Scalar p_{τ} sum of charged particles in the the maximum (minimum) of the two "transverse" regions as defined by the leading charged particle, p_{τ}^{max} , divided by the area in η - ϕ space, $1.6 \times 2\pi/6$, averaged over all events with at least one particle with e.g. $p_{\tau} > 0.5$ GeV/c, $|\eta| < 0.8$.
- TransMIN very sensitive to MPI and BBR
- TransMAX often contains a 3rd jet in events with hard ISR or FSR.
- TransDIFF (TransMAX TransMIN) very sensitive to ISR and FSR

$$\begin{split} |\Delta \phi| &< \pi/3 \rightarrow \text{TOWARD region} \\ \pi/3 &< |\Delta \phi| &< 2\pi/3 \rightarrow \text{TRANSVERSE region} \\ |\Delta \phi| &> 2\pi/3 \rightarrow \text{AWAY region} \end{split}$$

