MPI in EPOS

1

(From small to big systems)

Klaus Werner

in collaboration with M. Bleicher, B. Guiot, Y. Karpenko, A. G. Knospe, C. Markert, T. Pierog, G. Sophys, M. Stefaniak, J. Steinheimer

Multiple Scattering in EPOS = multiple Pomeron exchange

Crucial variable :

Number of Pomerons N_{Pom}
 closely related to multiplicity

This talk : Discuss the production of stable and unstable hadrons vs multiplicity in pp, pA, AA

Status 2015: Two parallel developments

EPOS LHC: Gribov Regge approach, parameterized flow as in EPOS1.99, tuned to LHC data (2012), very much used (and tested) by LHC pp groups, UE, forward physics etc, and used for air shower simulations

EPOS 3.0xx:

Gribov Regge approach, viscous hydro, parton saturation, mainly used for HI and collectivity in pp

2015/2016/2017: "Fusion", to accommodate basic pp and HI features, <u>public version</u>;

Currently: EPOS3.2xx

EPOS: Gribov-Regge approach

Phys.Rept. 350 (2001) 93-289.

Elastic scattering S-Matrix based on Pomerons

Pomerons : Parton ladders (DGLAP), soft pre-evolution

Cutting rules to get inelastic cross sections

Same principle for pp, pA, AA

Explicite formulas for cross sections (Phys.Rept. 350 (2001) 93-289)

Non-linear effects (Major improvements the past few years)

Computing the expressions G for single Pomerons: A cutoff Q_0 is needed (for the DGLAP integrals).

Taking Q_0 constant leads to a power law increase of cross sections vs energy (=> wrong)

because non-linear effects like gluon fusion are not taken into account

Solution: Instead of a constant Q_0 , use a dynamical saturation scale for each Pomeron:

$$oldsymbol{Q}_s = oldsymbol{Q}_s(N_{{
m I\!P}},s_{{
m I\!P}})$$

with

 $N_{\rm IP}$ = number of Pomerons connected to a given Pomeron (whose probability distribution depends on Q_s)

 $s_{\mathbf{IP}}$ = energy of considered Pomeron

7

We get $Q_s(N_{\mathbb{P}}, s_{\mathbb{P}})$ from fitting

- \Box the energy dependence of elementary quantities ($\sigma_{\rm tot}$, $\sigma_{\rm el}$, $\sigma_{\rm SD}$, $dn^{\rm ch}/d\eta(0)$) for pp
- \Box the multiplicity dependence of dn^{π}/dp_t at large p_t for pp at 7 TeV

We find

$$Q_s \propto \sqrt{N_{
m I\!P}}~ imes~(s_{
m I\!P})^{0.30}$$

CGC for AA:

$$Q_s \propto N_{\rm part} \, imes \, (1/x)^{0.30}$$

McLerran, Venugopalan, Phys. Rev. D 49, 2233 (1994)

=> Strong increase of $\langle p_t \rangle$ with multiplicity (checked for hadrons and resonances, not shown here)

and gives a strong nonlinear increase of D or J/Psi multiplicity vs charged multiplicity in pp and pPb ...

Core-corona picture in EPOS

Phys.Rev.Lett. 98 (2007) 152301, Phys.Rev. C89 (2014) 6, 064903

Gribov-Regge approach => (Many) kinky strings => core/corona separation (based on string segments)

peripheral AA high mult pp,pA

core => hydro => flow + statistical decay
corona => string decay

Final state hadronic cascade:

Resonance suppression (in-medium decay)

circles = pp (7TeV)

squares = pPb (5TeV)

stars = PbPb (2.76TeV)

ALICE data references (collected by A. G. Knospe)

<dNch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 [2011] pi+, K+, p+ in Pb+Pb: Phys. Rev. C 88 044910 (2013) Lambda in Pb+Pb: Phys. Rev. C 88 044910 (2013) Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) pi+, K+, p+, A in p+Pb: Phys. Lett. B 728 25-38 (2014) <dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016) Xi- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) <dNch/deta> p+p 7 TeV: Eur. Phys. J. C 68 345-354 (2010) pi+, K+, p+- in p+p 7 TeV: Eur. Phys. J. C 75 226 (2015) Xi- and Omega in p+p 7 TeV: Lett. B 712 309 (2012)

and pp data points from Rafael Derradi de Souza, SQM2016

Pion yields: core & corona contribution

Lifetime of hadronic phase

Kaon to pion ratio

Phi to pion ratio

Omega to pion ratio

K^{*} to pion ratio

Proton to pion ratio

Σ^* to pion ratio

ho to pion ratio

 Δ^{++} to pion ratio

Λ^* to pion ratio

Summary

- Hadron and resonance production contains a wealth of information, allowing to disentangle and better understand the different ingredients:
 - Core (Flow) => mini plasma in pp!!
 - Corona (Non-flow)
 - Hadronic cascade
- □ Consistency checks: mean pt vs multiplicity (see SQM talk)
- □ To be checked: Microcanonical decay

Thank you!

Consistency check: Average p_t of p

Average p_t of Ω

Hydro evolution (Yuri Karpenko)

Israel-Stewart formulation, $\eta - \tau$ coordinates, $\eta/S = 0.08$, $\zeta/S = 0$

Freeze out: at 164 MeV, Cooper-Frye $E\frac{dn}{d^3p} = \int d\Sigma_{\mu}p^{\mu}f(up)$, equilibrium distr

Hadronic afterburner: UrQMD

Marcus Bleicher, Jan Steinheimer

Multiplicity dep. of D production

(no free params)

hadronic cascade on/off has no effect

hydro on/off has small effect

J/Psi multiplicity vs Nch at RHIC

Calculations: D mesons

Data: J/Ψ

Increase stronger than at LHC

D multiplicity vs N_FB at LHC

$\mathbf{LM} \rightarrow \mathbf{HM}$:

<u>Pomerons get harder</u> (larger Q_s)

 \rightarrow favors high pt or large mass production

in particular due to case B (fewer P's, but harder) for highest pt bins !

Bigger effect at RHIC due to much narrower $N_{\rm Pom}$ distribution (harder **P**'s are needed)

Smaller effect for $\frac{dn}{d\eta}(FB)$ as multipl. variable (case B is replaced by case C: fewer **P**'s, but more covering the FB rapidity range)