Charged-particle multiplicity dependence of open heavy-flavour production in pp collisions with ALICE at the LHC

Massimiliano Marchisone

on behalf of the ALICE Collaboration

Institut de Physique Nucléaire de Lyon

9th International Workshop on Multiple Partonic Interactions at LHC Shimla, 14/12/2017

Open heavy flavours at the LHC

- Open heavy-flavour (HF) particles are mesons and baryons containing c and b quarks (D, B, Λ_c, Λ_b):
 - c and b are produced in hard partonic scatterings;
 - they have large masses and short formation times;
- HF production cross sections are calculable with pQCD.
- Heavy flavours are abundantly produced at LHC energies.

Massimiliano Marchisone, 14/12/2017

MPI 2017

Heavy flavour production in pp collisions

Production cross section can be calculated with perturbative QCD calculations based on the factorization approach:

- parton distribution functions (PDF);
- hard-parton scattering cross section;
- fragmentation function.

 $\sigma_{hh \to Hx} = PDF(x_a, Q^2) \cdot PDF(x_b, Q^2) \times \widehat{\sigma}_{ab \to q\bar{q}} \times D_{q \to H}(z_q, Q^2)$

Hard scattering and underlying event

Two component approach of a hadron collision:

- Initial hard scattering: large transferred Q^2 , pQCD applicable \rightarrow important for heavy-flavour, di-jet...
- Underlying event: production not associated with the hard scattering process → softer Multiple Parton Interactions still relevant at LHC energies, fragmentation of beam remnants...

Hard scattering and underlying event

Two component approach of a hadron collision:

- Initial hard scattering: large transferred Q^2 , pQCD applicable \rightarrow important for heavy-flavour, di-jet...
- Underlying event: production not associated with the hard scattering process → softer Multiple Parton Interactions still relevant at LHC energies, fragmentation of beam remnants...

Multiple Parton Interactions (MPI)

Class of events in which two or more distinct parton interactions occur simultaneously in a single hadron-hadron collision. arXiv:1111.0469

Production dependence on charged-particle multiplicity provides insight into processes occurring in the collision at the partonic level:

- is a key observable for addressing Multiple Parton Interactions;
- constrains MPI-based models where pQCD is not applicable;
- probes the interplay between soft and hard particle production mechanisms.

 $\label{eq:multiplicity-dependent studies in small colliding systems show remarkable similarities with AA collisions \rightarrow phenomena considered signatures of deconfinement have been observed in high-multiplicity pp collisions!$

Heavy-flavour production mechanisms in PYTHIA 8

Self-normalized quantities on x and y axes \rightarrow some uncertainties cancel out; possibility to compare different experiments, systems, energies...

Massimiliano Marchisone, 14/12/2017 MPI 2

MPI 2017

(日) (同) (三) (三)

Heavy-flavour production mechanisms in PYTHIA 8

Self-normalized quantities on x and y axes \rightarrow some uncertainties cancel out; possibility to compare different experiments, systems, energies...

イロト イポト イヨト イヨト

A Large Ion Collider Experiment

 ALICE is the LHC experiment dedicated to the study of ultrarelativistic heavy-ion collisions.

- It is composed of:
 - a central barrel for vertex reconstruction (ITS), tracking (ITS, TPC) and PID (EMCAL, ITS, TOF, TPC, TRD);
 - forward detectors for triggering purposes, luminosity, multiplicity and centrality determination (T0, V0, ZDC);
 - a forward muon spectrometer.

Multiplicity selection in ALICE

Two multiplicity estimators:

- mid-y: number of track segments (tracklets) in the two innermost layers of the ITS (SPD);
- forward-y: sum of amplitudes in the V0 scintillator arrays.

Different trigger configurations exploited over the years:

- minimum bias: coincidence of V0A, V0C and SPD;
- high multiplicity: threshold on number of hits in SPD.

D-meson reconstruction

- D mesons are reconstructed at midrapidity (|y| < 0.5) via their hadronic decays (invariant mass of decay products exploiting the "displaced" topology of the decay vertex to remove combinatorial background).
- Different background subtraction techniques exploited to go down to $p_{\rm T} = 0$.
- TOF and dE/dx techniques used to identify p, K and π .

D-meson reconstruction

- D mesons are reconstructed at midrapidity (|y| < 0.5) via their hadronic decays (invariant mass of decay products exploiting the "displaced" topology of the decay vertex to remove combinatorial background).
- Different background subtraction techniques exploited to go down to $p_{\rm T} = 0$.
- TOF and dE/dx techniques used to identify p, K and π .

Massimiliano Marchisone, 14/12/2017

Semileptonic decays: electron and muon reconstruction

- e from HF decays reconstructed at midrapidity ($|\eta| < 0.9$).
- Electron identified with TPC, TOF, EMCAL and/or TRD.

 Possibility to separate e←B studying the impact parameter.

- μ from HF decays reconstructed at forward rapidity (2.5<y<4).
- *p*_T-based trigger allows the rejection of low-*p*_T muons.
- Tracking+trigger tracks matching required to identify muons.

Semileptonic decays: electron and muon reconstruction

- e from HF decays reconstructed at midrapidity ($|\eta| < 0.9$).
- Electron identified with TPC, TOF, EMCAL and/or TRD.

 Possibility to separate e←B studying the impact parameter.

- μ from HF decays reconstructed at forward rapidity (2.5<y<4).
- *p*_T-based trigger allows the rejection of low-*p*_T muons.
- Tracking+trigger tracks matching required to identify muons.

D-meson results in pp collisions

JHEP 09 (2015) 148

- The results of D^0 , D^+ and D^{*+} are consistent within uncertainties.
- The yields of D mesons increase with charged-particle multiplicity at mid-rapidity: it is faster than linear at high multiplicity.

D-meson results in pp collisions

JHEP 09 (2015) 148

• Test possible auto-correlations using multiplicity measured in a different rapidity range than D yields \rightarrow qualitatively similar increasing trend of D-meson yields when a η gap is introduced.

12/24

Comparison with ${\sf J}/\psi$ production

 Similar increase of open charm, open beauty and charmonia with charged-particle multiplicity at mid-rapidity (different y and p_T intervals considered).

• See D. Takur's talk for more results on quarkonia in ALICE.

イロト イポト イヨト イヨト

- At low and intermediate multiplicity a similar increase is visible for pp and p-Pb collisions.
- Event multiplicity in p–Pb collisions determined also by multiple nucleon-nucleon collisions.
- See <u>S. De's talk</u> for more results on open heavy flavours in p-Pb collisions in ALICE.

Semi-leptonic decay: $\mu \leftarrow \mathsf{HF}$

- New results in pp collisions: $\mu \leftarrow \mathsf{HF}$ at forward y.
- D-meson and muon-based analyses (at different energy) show similar results especially at low multiplicity.
- At higher multiplicity the p_{T} -integrated muon trend is still linear.
- Also for muon decays the increase is independent of p_T at low multiplicity: hint of hierarchy at higher multiplicity?

イロト イポト イヨト イヨト

Model predictions for D mesons

General difficulty of the models to reproduce the data especially at high p_{T} .

16/24

Model predictions for $\mu \leftarrow \mathrm{HF}$

Drescher, Hladik, Ostapchenko, Pierog and Werner, Phys. Rept. 350 (2001) 93

- Measurements in bins of p_{T} compared with EPOS predictions.
- EPOS doesn't include hydrodynamics.
- The prediction underestimates the yield of muons for all p_{T} bins

ALICE measured the open heavy-flavour production at several energies and colliding systems. The yields in all channels studied show a strong increase with charged-particle multiplicity.

In pp collisions:

- for D mesons the increase is faster than linear at high multiplicity;
- a similar trend is observed for open and hidden heavy-flavour;
- models including MPI qualitatively predict an increasing trend, but underestimate it at high p_{T} .

Backup

Massimiliano Marchisone, 14/12/2017 MPI 2017

. ∎ 19/24

▶ < 문 > < 문 >

P

${\rm J}/\psi$ production mechanism in PYTHIA 8

 ALICE data at 7 and 13 TeV demonstrate a strong increase of the J/ψ yield with multiplicity.

PLB 712 (2012) 165

- In initial hard scattering no correlation of charmonium production with event activity.
- J/ψ production also due to other mechanisms.

More on J/ψ simulation

Massimiliano Marchisone, 14/12/2017 MPI 2017

21/24

→ < Ξ →</p>

D mesons in pp collisions

• Percolation:

- interactions driven by the exchange of colour sources (strings ~MPI scenario);
- strings have finite spatial extension and can interact;
- at high density the coherence leads to a reduction of their number, i.e. a reduction of charged-particle multiplicity;
- heavy-flavours are less affected due to the smaller transverse size of hard

sources;

D mesons in pp collisions

- EPOS 3 (event generator):
 - initial conditions
 - Gribov-Regge multiple-scattering formalism
 - saturation scale to model non-linear effects
 - hadronisation via string fragmentation
 - number of MPI directly related to multiplicity
 - hydrodynamic evolution.
 - can be applied to the dense core of the collision

ALICE

More details on PYTHIA 8

SoftQCD process selection, including colour reconnection and diffractive processes.

- First hard process ≅hardest process → weak dependence on multiplicity (slight increase at low multiplicities followed by a saturation).
- MPI ≅ subsequent hard process → increasing trend vs. multiplicity.
- gluon splitting from hard process
 → increasing trend vs. multiplicity.
- initial and final-state radiation increasing trend vs. multiplicity

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

< ロ > < 同

ALTCE