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Introduction (Fritiof)

Distributing nucleons

Colliding nucleons
ˇ

Outline

◮ Remeber Fritiof?

◮ Glauber model generation

◮ Stacking of parton-level NN events

◮ Some results

◮ Outlook
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Outline

◮ Remeber Fritiof? — RIP

◮ Glauber model generation

◮ Stacking of parton-level NN events

◮ Some results

◮ Outlook — Long live Angantyr!
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Introduction (Fritiof)

Distributing nucleons

Colliding nucleons
ˇ

Remember Fritiof?

Simple picture of pp collisions

◮ Flat rapidity plateau — simple string fragmentation

◮ High mass diffractions dσ/dM2
X ∝ M

−2(1+ǫ)
X were ǫ is small.

◮ Works surprisingly well for
√

s ≤ ISR.

◮ Fritiof + Glauber gives heavy Ion collisions.

◮ Works very well at low energies.
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−
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Hadronises as if doubly diffractive excitation
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Introduction (Fritiof)

Distributing nucleons

Colliding nucleons
ˇ

Tanking Fritiof into the 21st century (TeV energies)

◮ We need hard parton scatterings

◮ We need MPI

◮ We also want to do eg. top production

◮ Will building up non-diffractive NN scatterings with single

diffractive excitations work at high energies?

◮ Do we need to treat real diffractive NN scatterings

separately?
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Introduction (Fritiof)

Distributing nucleons

Colliding nucleons
ˇ

The Strategy: Parton-level stacking

◮ Distributing nucleons in nuclei.

◮ Determining which projectile nucleons interact with which

target nucleons, and how.

◮ Generate (non-) diffractive parton-level min-bias events

with PYTHIA8 for each NN scattering.

◮ Merge them together, and construct nuclei remnants.

◮ Hadronise everything together

including rope and shoving effects.
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Introduction (Fritiof)

Distributing nucleons

Colliding nucleons
ˇ

Distributing nucleons in nuclei

This is the easy part. Or is it?

PYTHIA8 implements the GLISSANDO model with a “hard core”

PYTHIA8 allows for arbitrary nucleon models to be plugged in

and be investigated.

[arXiv:1310.5475]
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Distributing nucleonsˆ

Colliding nucleons

Generating paron-level NN-events
ˇ

Colliding Nucleons

We generate an nucleus–nucleus impact parameter, and for

each pair of colliding nucleons we take their mutual

impact-parameter distance and determine if they will interact

and, if so, how:

◮ Absorptive (inelastic, non-diffractive)

◮ Double diffractive excitation

◮ Single diffractive excitation (on either side)

◮ Elastic? Central Diffraction?

PYTHIA8 allows you to plug in your own model.
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Distributing nucleonsˆ

Colliding nucleons

Generating paron-level NN-events
ˇ

Diffraction and fluctuations

Fritiof only did single diffraction, we want to have a better

treatment of non-diffractive interactions and we therefore want

to differentiate.

Diffraction is driven by the fluctuations in the cross section.

We use a model inspired by Strikman et al., where the cross

section fluctuations are attributed to fluctuations in the projectile

and target nucleon separately.

[arXiv:1301.0728, . . . ]
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Colliding nucleons

Generating paron-level NN-events
ˇ

projectile targetcollisions
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

We generate the collisions in order

◮ If the participating nucleons has not participated in a
previous collision

◮ Ask PYTHIA to generate a corresponding event using the

standard min-bias implementation.

◮ If one of the nucleons has interacted before, the other
nucleon will add to the particle production as if it was
diffractively excited (Fritiof)

◮ Generate SD event with PYTHIA

◮ Remove elastic proton
◮ Merge with previous sub-event

◮ If both nucleons have interacted before, nothing happens.
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Signal processes

Not only min-bias. Rather than just generating non-diffractive

events, The first absorptive sub-event can be generated using

any hard process in PYTHIA8, giving the final event a weight

NAσhard/σND.
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Secondary absorptive collisions

According to Fritiof this should look like a diffractively excited

system. But there we only had flat strings in absorptive and

diffractive scatterings.

Now we have much more complex string configurations.

In PYTHIA8 the diffractive states depend on

◮ Disribution in MX .

◮ The assumed (non-diffractive) pomeron–proton cross

section, σpIP(MX ).

◮ The soft MPI-regularisation p⊥,0(Mx )

◮ The parton densities of the pomeron
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Comparing SD with ND in PYTHIA8
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Comparison to data

Several parameters in addition to the pp PYTHIA8 ones.

◮ Nucleon distributions can in principle be measured

independently.

◮ NN cross section fluctuations are fitted to (semi-) inclusive

pp cross sections (total, non-diffractive, single and double

diffractive, elastic, and elastic slope) for given
√

sNN .

◮ Diffractive parameters for secondary absorptive collisions,

“tuned” to non-diffractive PYTHIA.

◮ MX distribution: dM2
X/M

2(1+ǫ)
X , could be tuned (to pA), but

we choose ǫ = 0.

◮ Few other choices concerning energy momentum

conservation which do not have large impact.
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Centrality in pPb
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Eta distribution in pPb

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b
b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
b b

ATLASb

Pythia8/Angantyr

-2 -1 0 1 2
0

10

20

30

40

50

60

70

80

90
Centrality-dependent η distribution, pPb,

√

SNN = 5 TeV.

η

(1
/

N
ev
)

d
N

ch
/

d
η

pA Final states 16 Leif Lönnblad Lund University



Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Eta distribution in pPb

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b
b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
b b

ATLASb

Pythia8/Angantyr

binned in ∑ E⊥, f wd

-2 -1 0 1 2
0

10

20

30

40

50

60

70

80

90
Centrality-dependent η distribution, pPb,

√

SNN = 5 TeV.

η

(1
/

N
ev
)

d
N

ch
/

d
η

pA Final states 16 Leif Lönnblad Lund University



Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Results

Central multiplicity in PbPb
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Colliding nucleonsˆ

Generating paron-level NN-events

Outlook

Outlook

◮ Heavy Ions and the Angantyr model was introduced in

PYTHIA8.230.

◮ Gives a reasonable baseline for HI collisions without

collectivity in pp, pA and AA

◮ Please use it with your detector simulations to correct

down to fiducial, particle level, observables. And yes!

The centrality measure is an important observable!
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Outlook

Outlook

◮ Heavy Ions and the Angantyr model was introduced in

PYTHIA8.230.

◮ Gives a reasonable baseline for HI collisions without

collectivity in pp, pA and AA

◮ Please use it with your detector simulations to correct

down to fiducial, particle level, observables. And yes!

The centrality measure is an important observable!

◮ And then implement them in RIVET!
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