Studies of Monte Carlo Modelling of Jets at ATLAS

Deepak Kar
On behalf of ATLAS collaboration

MPI@LHC, Shimla, December 11-15, 2017

Studies of Monte Carlo Modelling of Free at ATLAS

Deepak Kar
On behalf of ATLAS collaboration

MPI@LHC, Shimla, December 11-15, 2017

New Colour Reconnections Models in Pythia8

- CRO: Currently used MPI-based model.
- CR1: New QCD-based model, with more complete treatment of QCD multiplet structure, resulting in enhancement of baryon production.
- CR2: New gluon-move model, where only gluons are considered for reconnection.

Question:

• Can the newer models describe our data reasonably well?

Underlying Event Observables

- Measured at 900 GeV, 7 TeV and 13 TeV (new!) using leading charged particle.
- Tunes are derived for each CR model, and compared to A14 predictions (which uses CRO model), and then with A14 with CR1 and CR2.

Only 13 TeV results shown: the trend is similar at lower collision energies, but somewhat worse agreement at 900 GeV

UE Activity: CRO

ATL-PHYS-PUB-2017-008

Transverse region

Similar level of agreement.

This data was not used in A14.

Mean p_T vs multiplicity can be modelled well.

UE Activity: CR1

ATL-PHYS-PUB-2017-008

Transverse region

Only changing to CR1 degrades performance.

Retuning helps.

UE Activity: CR2

ATL-PHYS-PUB-2017-008

Not a significant improvement by retuning, more study needed.

Tuned Values

Parameter	A14/		Tune	
	Default (range)	CR0	CR1	CR2
MultipartonInteractions:pT0Ref	2.09	2.15	1.89	2.21
MultipartonInteractions:expPow	1.85	1.81	2.10	1.63
ColourReconnection:range	1.71	2.92	_	_
ColourReconnection:m0	0.3 (0.1 - 5)	_	2.17	_
ColourReconnection:junctionCorrection	1.20 (0.01 - 10)	_	9.33	_
ColourReconnection:m2Lambda	1.0 (0.25-16)	_	_	6.73
ColourReconnection: fracGluon	1.0 (0-1)	_	_	0.93
ColourReconnection:dLambdaCut	0 (0-10)	_	_	0.0
χ^2 , Ndof		17706, 2929	18597, 2928	113814, 2928
$\chi^2/Ndof$		6.1	6.4	38.9

Worst fit for CR2 tune, but overall reasonable level of agreement can be achieved with all models.

Tuned Values

arXiv:1709.04207

These different CR models can be used to estimate CR uncertainty in a realistic way.

Many analyses suffer from a large CR modelling uncertainty, such as top mass.

	arxiv:1709.04207	
Source	Uncertainty [GeV]]-
Detector model		
Electron	$^{+0.14}_{-0.07}$	
Muon	$^{+0.11}_{-0.06}$	-
Jet energy scale	$^{+0.42}_{-0.30}$	
Jet energy resolution	± 0.27	
Jet vertex fraction	$+0.13 \\ -0.03$	-
Jet reconstruction efficiency	± 0.03	_
Missing transverse momentum	± 0.01	
b-Tagging	$^{+0.32}_{-0.24}$	
Signal model		-
ME event generator	± 0.41	
Colour reconnection	± 0.19	
Underlying event	± 0.11	
Radiation	± 0.07	_
PDF	± 0.06	
PS/hadronisation	± 0.05	
Background model		_
Multijet	$^{+0.04}_{-0.00}$	
W+jets	± 0.02	
Single top	< 0.01	h
Template statistical uncertainty	± 0.07	
Luminosity	+0.03 -0.00	
Total systematic uncertainty	$+0.79 \\ -0.68$	

Jets have been measured with unprecedented reach and accuracy in Run 2:

Modelling

Comparison with NLO pQCD predictions calculated using NLOJET++ with three different PDF sets (CT14, MMHT 2014, NNPDF 3.0)

ATLAS

s = 13 TeV

anti-k, *R*=0.4

Data

NLO QCD $\otimes k_{EW} \otimes k_{NP}$

NNLO QCD

 $\otimes k_{EW} \otimes k_{NP}$

 $\mu_{\rm R} = \mu_{\rm F} = \rho_{\rm T}^{\rm jet}$

 $L = 81 \text{ nb}^{-1} - 3.2 \text{ fb}^{-1}$

Comparison with NLO and NNLO pQCD predictions calculated using NLOJET++ and NNLOJET withMMHT 2014 PDF

Scale Choice

arXiv:1705.08205

- Difference between choosing leading jet pT or inclusive jet pT
- What should be the right choice?
- Should it depend on the kinematics or topology of the event?
- Relevant for PDF fit

V+Jets Modelling

ATL-PHYS-PUB-2017-006

Eur. Phys. J. C77 (2017) 361

Dijet mass modelling gets worse at high masses

Eur. Phys. J. C 77 (2017) 474

Data $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$

SHERPA (QCD+EW)

POWHEG+PYTHIA8 (QCD+EW)

Older Sherpa

HEJ (QCD) + POW+PY (EW)

Sherpa: NLO-accurate for up to two extra emissions and LO-accurate for up to four extra emissions. Too much activity at high multiplicity.

MG5_aMC@NLO lacks additional multilegs beyond the third emission,

Large scale uncertainties of the order of 30 to 40 %.

B-hadron Pair Production

$$B(\to J/\psi[\to \mu^+\mu^-] + X)B(\to \mu + X)$$

Tested against different Pythia8 g->bb splitting modes:

Option	Descriptions
label	
Opt. 1	The same splitting kernel, $(1/2)(z^2+(1-z)^2)$, for massive as massless quarks, only with an
	extra β phase-space factor. This was the default setting in PYTHIA8.1, and currently must
	also be used with the MC@NLO [36] method.
Opt. 4	A splitting kernel $z^2 + (1-z)^2 + 8r_q z(1-z)$, normalised so that the z-integrated rate is
	$(\beta/3)(1+r/2)$, and with an additional suppression factor $(1-m_{qq}^2/m_{\text{dipole}}^2)^3$, which reduces
	the rate of high-mass $q\bar{q}$ pairs. This is the default setting in PYTHIA8.2.
Opt. 5	Same as Option 1, but reweighted to an $\alpha_s(km_{qq}^2)$ rather than the normal $\alpha_s(p_T^2)$, with
	k=1.
Opt. 5b	Same as Option 5, but setting $k = 0.25$.
Opt. 8	Same as Option 4, but reweighted to an $\alpha_s(km_{qq}^2)$ rather than the normal $\alpha_s(p_T^2)$, with
	k=1.
Opt. 8b	Same as Option 8, but setting $k = 0.25$.

Also against 4 and 5 flavour schemes in Madgraph and Sherpa

 $\frac{1}{\sigma}\frac{d\sigma}{d\Delta R(J/\psi,\mu)}$

MC/Data

MC/Data

 $\frac{1}{\sigma} \frac{d\sigma}{dm(J/\psi, \mu)} [GeV^{-1}]$

 10^{-3}

1.2

0.8

0.6

MC/Data

MC/Data

ATLAS

 \sqrt{s} = 8 TeV, 11.4 fb⁻¹

60

1.2

ATLAS

√s= 8 TeV, 11.4 fb⁻¹

Data

2

Data

Stat.

3

Stat.

-- Pythia8 Opt. 1

--- Pythia8 Opt. 4

--- Pythia8 Opt. 8

Pythia8 Opt. 5b

Pythia8 Opt. 8b

5

Pythia8 Opt. 1

--- Pythia8 Opt. 4

--- Pythia8 Opt. 8

--- Pythia8 Opt. 5b

--- Pythia8 Opt. 8b

 $m(J/\psi,\mu)$ [GeV]

Stat.+Syst. — Pythia8 Opt. 5

 $\Delta R(J/\psi,\mu)$

Stat.+Syst. - Pythia8 Opt. 5

The p_T-based scale splitting kernels (Opt. 1 and 4) generally give a better descriptions with the kernel of Opt. 4 performing the best.

The 4- and 5flavour MadGraph5_aMC@ NLO+Pythia8 predictions bracket the data, with the 4-flavour closer in shape.

The 5-flavour schemes have similar shape in Sherpa.

2

3

 $\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\Delta\mathrm{R}(J/\psi,\mu)}$

MC*/Data

MC/Data

0.6

ATLAS

 \sqrt{s} = 8 TeV, 11.4 fb⁻¹

Data

Stat.

→ MG5_aMC+Py8 4fl*

- Pythia8 Opt. 4

Herwig++

Stat.+Syst. → Sherpa 5fl*

→ MG5_aMC+Py8 5fl*

 $\Delta R(J/\psi,\mu)$

- Anderlying event distributions at three c.m energies can be described reasonably well by newer CR models
 - et distributions are described reasonably well by state-of-the-art predictions
- Improvements possible in 7/+jets modelling, specifically in dijet mass or jet multiplicity
- B-hadron pair production modelling is compared against data