Jet Substructure Measurements Sensitive to Soft QCD effects with the ATLAS Detector

MPI@LHC, Shimla, 12th December 2017 Lily Asquith for the ATLAS collaboration

Introduction

Two recent ATLAS measurements of substructure observables sensitive to soft QCD effects:

Measurement of the k_t splitting scales in $Z \rightarrow \ell \ell$ events in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

Constrain and tune MC generators (hard perturbative modeling and soft hadronic activity)

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector

Perturbative region: constrain calcs Non-perturbative: constrain MC generators

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

Jet Reconstruction for Substructure

- Both measurements use **iterative recombination** jet reconstruction procedures to identify different types of jets, whose histories contain information useful to identify their substructure.
- The inputs to jet reconstruction algorithm are the four-momenta of either charged particle tracks, clusters of energy in the calorimeter, or truth particles.
- 1. Make a list of input four momenta, and define all possible pairs.
- 2. Find the smallest dij of all pairs, and combine that pair.
- 3. Repeat.

- $d_{ij} = min (k_{Ti}^{n}, k_{Tj}^{n}) dR_{ij}$
- If n=-2 : choose the softer k_T in the pair
- If n=0 : ignore the k_T
- If n=2: choose the harder k_T in the pair
 Different n = different smallest d_{ij}

ANIMATION 1/12

ANIMATION 5/12

ANIMATION 6/12

Jet algorithms refresher

 $kT (d_{ij} \propto p_T^2)$ soft+close

CA ($\mathsf{d}_{\mathsf{ij}} \propto p_T^0$) close

ANIMATION 7/12

ANIMATION 9/12

Jet algorithms refresher

The final jet

Back up one step

Back up one step

The penultimate stage in the jet clustering epitomizes the difference between the algorithms: if there is hard underlying structure then kT and CA have the ability to spot it. 3/14 Measurement of the k_t splitting scales in $Z \rightarrow \ell \ell$ events in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

Splitting Scales

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8\,{\rm TeV}$ with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

Measurement uses k_t algorithm (soft+close first = hard+wide last) with tracks as input. $d_{ii} = \min (k_{Ti}^2 k_{Ti}^2) dR_{(ii)}$

Note that soft / collinear splittings have low values of Vd_i

Event Selection

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8\,{\rm TeV}$ with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

Run 1 8 TeV dataset : 20.2/fb

Aim to select Z_{ℓ} +jets events at high purity, examine splitting scales in jets. Track-jets are used to reduce uncertainties.

		Z	$C \to e^+ e^-$	$Z \to \mu^+ \mu^-$	
	Process	Events	Contribution [%]	Events	Contribution $[\%]$
SHERPA 1.4.3	QCD $Z + jets$	5090000	98.93%	7220000	99.40%
	Multijet	42000	0.81%	25000	0.34%
	Electroweak $Z + jets$	5350	0.10%	7340	0.10%
	Top quarks	6190	0.12%	8440	0.12%
	W(W)	1100	0.02%	1460	0.02%
	$Z \to \tau^+ \tau^-$	1100	0.02%	1700	0.02%
	Total expected	5150000	100.00%	7260000	100.00%
	Total observed	5196858		7349195	

~12M events in data with ~99% purity.

Iterative Bayes unfolding to particle-level applied to data - background.

Unfolded Data v. Calculations

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8\,{\rm TeV}$ with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

Fixed order calculations not really helping for very low masses

7/14

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

Soft Drop Jet Mass

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

Measurement uses CA algorithm R=0.8 with calibrated energy clusters as inputs.

Larger values of β : more likely to pass criteria : less radiation removed.

When algorithm terminates, mass of resulting 'groomed' jet **m** is used. The p_T of the ungroomed jet is then used in the denominator of the soft drop mass variable :

$$\log_{10}{(\frac{m}{p_{T}})^{2}}$$

Event Selection

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

Run 2 13 TeV dataset : 32.9/fb**Aim is to select dijet events** (high-p_T ensures full trigger efficiency), and examine the soft drop masses of the jets.

Trigger:

Dijet trigger 600 GeV

Offline selection:

Two anti-k_t R=0.8 jets, the leading one with p_{T1} >600 GeV, second with $p_{T2} > \frac{2}{3} p_{T1}$, $\eta < 1.5$

anti-k_t R=0.8 jets used for event selection, then the constituents are reclustered with CA R=0.8.

Soft Drop Jet Mass Measurement

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

$\beta = 2$: less soft radiation removed

11/14

Data v. Calculations

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

Iterative Bayesian unfolding to particle-level applied to data.

Uncertainties

A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13~{\rm TeV}$ with the ATLAS detector

arXiv:1711.08341 STDM-2017-04. Submitted to PRL

Summary

Two recent ATLAS measurements of substructure observables sensitive to soft QCD effects:

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8{\rm TeV}$ with the ATLAS detector	Constrain and tune MC generators (hard perturbative modeling		
arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026	and soft hadronic activity)		
A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector	Perturbative region:		
arXiv:1711.08341 STDM-2017-04. Submitted to PRL	Non-perturbative:		

Soft drop mass shows particular promise for looking in detail at soft QCD.

..thank you for your attention.

ADDITIONAL MATERIAL

kT splitting event selection

• Trigger:

- Opposite-charge electron or muon pair targeting $\mathsf{Z}_{\operatorname{\ell\!\ell}}$

• Offline selection:

- Tracks: p_T>400 MeV, eta<2.5, >=1pixel, >=5 SCT, chi2<3, d0 < 1mm, z0xsin <0.6mm
- Electrons: must be Isolated, pT>25 GeV, eta<2.47 (excluding 1.37-1.52)
- Muons: (combined) must be pT>25 GeV, eta<2.4,
- Isolation: (pT in dr<0.2 < 10% pT muon and pT in dr<0.2 < 13% pT electron
- Zll mass: 71-111 GeV

Analysis Sample

~5M signal events with ~99% purity.

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8\,{\rm TeV}$ with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

SHERPA 1.4.3 up to 4 LO hard emissions,CT10		$Z \rightarrow e^+ e^-$		$Z \to \mu^+ \mu^-$		-
	Process	Events	Contribution $[\%]$	Events	Contribution [%]	
	$\left[\text{QCD } Z + \text{jets} \right]$	5090000	98.93%	7220000	99.40%	
	Multijet	42000	0.81%	25000	0.34%	Estimated from data
	Electroweak $Z + jets$	5350	0.10%	7340	0.10%	
POWHEG + Pythia6	Top quarks	6190	0.12%	8 4 4 0	0.12%	
	W(W)	1100	0.02%	1460	0.02%	
	$Z \to \tau^+ \tau^-$	1100	0.02%	1700	0.02%	
	Total expected	5150000	100.00%	7260000	100.00%	_
	Total observed	5196858		7349195		_

Z+jets normalised to NNLO prediction (PhysRevD.69.094008)

Tt backgrounds normalised to NNLO in QCD, incl resum of soft gluons in NNLL (PhysRevLett.110.252004) (PhysRevD.83.091503)

Iterative Bayesian unfolding to particle-level applied to background-subtracted data.

Data v. Calculations

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8\,{\rm TeV}$ with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

MEPS@NLO : SHERPA v2.2.1, 2(4) partons at N(LO) (Comix and OpenLoops) PDF: NNPDF3.0nnlo

NNLOPS : POWHEG-BOX (DY@NNLOPS and MiNLO) (showering by Pythia 8.185, monash tune) PDF: PDF4LHC15nnlo

Uncertainties

3-10% uncertainty over most of range

Steeper rise (to ~15%) for subleading splitting scales

Measurement of the $k_{\rm t}$ splitting scales in $Z\to\ell\ell$ events in pp collisions at $\sqrt{s}=8\,{\rm TeV}$ with the ATLAS detector

arXiv:1704.01530 STDM-2015-14 Published in JHEP08 (2017) 026

