Latest Minimum Bias and Underlying Event Measurements at ATLAS

Deepak Kar On behalf of ATLAS collaboration

MPI@LHC, Shimla, December 11-15, 2017

Glossary

- Minimum-bias (MB): Pretty much everything, exact definition trigger dependent.
- Underlying event (UE): everything except the hard scattered partons, pedestal activity to events with an identified hard scatter (more like the actual interesting events we want to look at)
- Pileup (PU): (uncorrelated) separate collisions within the same/different bunch crossing we can't differentiate because of our finite detector resolution (more like "isotropic" min-bias events).

Prologue

At the start of Run 1:

- Tevatron tunes did not agree with the early minbias and underlying event data.
- Not just at 7 TeV, but also at 900 GeV!

Charged Particle Pseudorapidity

13 TeV!

Higher transverse momentum threshold

Overall Epos is the best, stark difference in A2 predictions going from 100 to 500 MeV

Charged Particle Transverse Momentum

Higher transverse momentum threshold

13 TeV!

Epos is best for both

A2 and Monash are competitive but not over the full range

Charged Particle Multiplicity

Higher transverse momentum threshold

$dn_{\rm ch}$ $/ dn_{ch}$ $n_{ m ch} \ge$ 2, $p_{_{ m T}}$ > 100 MeV, $|\eta|$ < 2.5 $n_{ m ch} \ge$ 1, $p_{_{ m T}}$ > 500 MeV, $|\eta|$ < 2.5 $\tau > 300 \text{ ps}$ $\tau > 300 \text{ ps}$ $|/N_{ev} \cdot dN_{ev}|$ · dN **ATLAS** $\sqrt{s} = 13 \text{ TeV}$ **ATLAS** √s = 13 TeV 10 10⁻² $1/N_{ev}$ 10^{-3} 10^{-3} 10^{-4} 🗕 Data 🗕 Data PYTHIA 8 A2 PYTHIA 8 A2 10^{-4} PYTHIA 8 Monash 10⁻⁵ PYTHIA 8 Monash ····· EPOS LHC EPOS LHC ----- QGSJET II-04 ----- QGSJET II-04 10^{-5} 10^{-6} 1.5 1.5 MC / Data MC / Data 0.5 0.5 150 20 50 100 200 250 60 80 120 40 100 $n_{\rm ch}$ n_{ch} Eur. Phys. J. C 76 (2016) 502 Physics Letters B (2016), Vol. 758, pp. 67-88

13 TeV!

Similar

trends

None of the models do well over the whole range

Mean Transverse Momentum against Multiplicity Correlation

Higher transverse momentum threshold

13 TeV!

Correlation depends on colour reconnection

Better modelled at 500 MeV, QGSJETII has no CR

Charged Particle Distributions at 8 TeV

- Models show discriminating power
- Results available for different phase spaces

Dependence on E.C.M

About 20% increase from going from 7 to 13 TeV

> Most models get the energy extrapolation trend right

Underlying Event

13 TeV!

leading track (N_{ch}/ δη δφ) $p_{-} > 0.5 \text{ GeV}, |\eta| < 2.5$ ATLAS $\sqrt{s} = 13 \text{ TeV}, 1.6 \text{ nb}^{-1}$ Transition from 10 L ----- PYTHIA 8 A14 > 10 GeV $\Delta \phi$ relatively isotropic MB –– PYTHIA 8 Monash plead > 1 GeV Herwig7 scattering to the toward Epos $|\Delta \phi| < 60^{\circ}$ emergence of harder UE transverse transverse $60^{\circ} < |\Delta \phi| < 120^{\circ}$ $60^{\circ} < |\Delta \phi| < 120^{\circ}$ away $|\Delta \phi| > 120^{\circ}$ δφ ⟩[GeV $p_{-} > 0.5 \text{ GeV}, |\eta| < 2.5$ Data MC / > 10 GeV હ્ર 10**⊢** 0. > 1 GeV ď 0.8 ผ Data N N N 0.8 Ω 20 40 60 80 100 120 140 |∆ø| [d JHEP03(2017)157 1.1

Overall decent agreement, MB tunes do better for lower lead p_T, while UE tunes are better for higher slices

 $-\Delta\phi$

ATLAS √s = 13 TeV, 1.6 nb⁻¹ ----- PYTHIA 8 A14 – – PYTHIA 8 Monash Herwig7 ---- Epos MC / Data > 10 Ge\ 0.9 0.8 MC / Data 0.8 0 20 60 80 100 120 140 160 $|\Delta \phi|$ [degrees] JHEP03(2017)157

Leading Charged Particle

13 TeV!

Best modelled by Pythia8 A14/Monash

Others have somewhat different shapes

Comparison of Regions I

13 TeV!

Characteristic plateau at transverse region, cross-over for away

Comparison of Regions I

13 TeV!

toward

 $|\Delta \phi| < 60^\circ$

 $|\Delta \phi| > 120$

transvers

 $60^\circ < |\Delta\phi| < 120$

transverse

 $50^\circ < |\Delta\phi| < 120$

Max/Min/Diff sensitive to different aspects of the UE. Trans-min most sensitive to UE, trans-max gets UE and hard jet contamination, and trans-diff is dominated by extra hard jets.

Trans-min Region I

13 TeV!

Best described by Pythia8 Monash and Herwig?

Trans-min Region II

13 TeV!

Correlation is sensitive to CR, underestimated at low multiplicity by all models

Evolution with Collision Energy

Summary

- Run 2 MB and UE measurements showed better MC modelling compared to early Run 1
- Predicted collision energy dependence was seen as well.
- Tension between MB and UE tunes remain.
- Standard UE measurements are contaminated by hard scatter, so alternative measurement strategies are needed if modelling of MPI/CR to be improved.

Epilogue

