Search of Standard Model Higgs Boson via WW decay channel using the CMS detector

Ankita Mehta¹*, V. Bhatnagar¹, K. Mazumdar², J.B. Singh¹ ¹Panjab University, Chandigarh, ² TIFR, Mumbai (On behalf of the CMS Collaboration)

The Large Hadron Collider (LHC) **Compact Muon Solenoid (CMS) detector**

- World's most powerful particle accelerator
- Accelerates and collides two counter rotating proton/Pb beams at CMS very high energy
- Beams are made to collide @ 4 points corresponding to detector
- positions: ATLAS, CMS, ALICE & LHCb
- CMS: One of the two general purpose detectors aims to Study Standard Model (SM) at high energy bb ORWARD ALORIMETER Branching Search/study Higgs Boson ττ 10⁻¹ Search for the Beyond Standard Model particles 10⁻² One Higgs boson is found @ 125 GeV, Need to verify SM Zγ theory by measuring its properties precisely. 10^{-3} 180 200 140 160 120 100 M_H [GeV]
- Rich Higgs searches and studies progam @ LHC

SM Higgs Boson Production

Decay Modes at LHC

- Gluon fusion (gg \longrightarrow H) is the dominant production mechanism at LHC
- 'VBF", "VH", "ggH" and "ttH" allow to test H properties

• At 125 GeV \rightarrow WW & $b \bar{b}$ decay channels

have Largest Branching Fractions

- **\blacksquare** For a High Mass Higgs, H \rightarrow WW, ZZ are the dominating ones
- **φ** yy, ττ & ZZ are also exploitable at 125 GeV
- Measuring the properties of the 125 GeV
- Higgs Boson requires control of SM backgrounds

jet

lepton

2.3/fb collected in 2015

Event Signature:

- Oppositely charged electron-muon pair with small opening angle
- Large Missing Transverse Energy coming from neutrinos
- Background composition varies w.r.t. number of jets
- 0 jets: WW, W+jets, 1 jet: WW, Top

Event Selection:

Leading lepton $p_{\tau} > 20$ GeV, Trailing lepton $p_{\tau} > 13$ (10) GeV if electron (muon)

- > Third lepton veto, $m_{\parallel} > 12 \text{ GeV}$, $p_{\perp}(II) > 30 \text{ GeV}$, MET > 20 GeV
- ▶ 0 or 1 additional jet with $p_{\tau} > 30 \text{ GeV}$
- *Neutrinos —impossible to reconstruct an invariant mass spectrum*
- Build a transverse mass variable: Di-lepton and MET system considered
- > 2D template fit based on m_{\parallel} : m_{τ} (II, MET)

Background Estimation

Results & Conclusions

▶ 2D un-rolled distribution of m_{\parallel} : m_{\perp} (II, MET): "trains" of m_{\parallel} in m_{\perp} (II, MET) windows

µe or eµ case based on leading lepton flavor

Signal strength

$$\sigma / \sigma_{SM} = 0.3 \pm 0.5$$

Significance = 0.7 σ
(expected 2.0 σ)

Workshop on Frontiers in Electroweak Interactions of Leptons and Hadrons @ AMU, Aligarh

* ankita.mehta@cern.ch