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Plan of the talk
Deep Underground Neutrino Experiment (DUNE) : what is it 
best suited for ?


CP violation signal at DUNE assuming standard interactions (SI)


CP violation in Neutrino oscillations 


CP asymmetries in appearance channel : SI and NSI


Impact of nonstandard interactions (NSI) on the CP violation 
signal at DUNE


event rates, sensitivity studies, baseline optimisation, 
exposure optimisation etc 


Other ongoing work on long baselines




CP violation sensitivity @ DUNE



Mega-watt class beam, wide band beam 0.5 - 10 GeV

Baseline is 1300 km 


Ideal for mass ordering and CP violation  
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Probability at 1300 km and flux

.

To exploit the full three flavour effects in neutrino oscillations 

constrain the known parameters and measure the unknown parameters


DUNE has a broad program of neutrino oscillation physics

Beam covers first  (2.5 GeV) and second (0.8 GeV) oscillation maxima

will run in both neutrino and antineutrino mode for ~6-10 years


28 2 The Science of LBNE
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Figure 2.3: Neutrino oscillation probabilities as a function of energy and baseline, for different values of
”CP, normal hierarchy. The oscillograms on the left show the ‹µ æ ‹e oscillation probabilities as a function
of baseline and energy for neutrinos (top left) and antineutrinos (bottom left) with ”CP = 0. The figures
on the right show the projection of the oscillation probability on the neutrino energy axis at a baseline of
1,300 km for ”CP = 0 (red), ”CP = +fi/2 (green), and ”CP = ≠fi/2 (blue) for neutrinos (top right) and
antineutrinos (bottom right). The yellow curve is the ‹e appearance solely from the “solar term” due to ‹1
to ‹2 mixing as given by Equation 2.14.

The variation in the ‹µ æ ‹e oscillation probabilities with the value of ”CP indicates that it is
experimentally possible to measure the value of ”CP at a fixed baseline using only the observed
shape of the ‹µ æ ‹e or the ‹µ æ ‹e appearance signal measured over an energy range that
encompasses at least one full oscillation interval. A measurement of the value of ”CP ”= 0 or fi,
assuming that neutrino mixing follows the three-flavor model, would imply CP violation. The CP

The Long-Baseline Neutrino Experiment
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of producing and detecting ‹· ’s, the oscillation modes ‹µ,e æ ‹e,µ provide the most promising
experimental signatures of leptonic CP violation.

For ‹µ,e æ ‹e,µ oscillations that occur as the neutrinos propagate through matter, as in terrestrial
long-baseline experiments, the coherent forward scattering of ‹e’s on electrons in matter modifies
the energy and path-length dependence of the vacuum oscillation probability in a way that de-
pends on the magnitude and sign of �m2

32. This is the Mikheyev-Smirnov-Wolfenstein (MSW)
effect [71,72] that has already been observed in solar-neutrino oscillation (disappearance) experi-
ments [73,74,75,76]. The oscillation probability of ‹µ,e æ ‹e,µ through matter, in a constant density
approximation, keeping terms up to second order in – © |�m2

21|/|�m2
31| and sin2 ◊13, is [77,55]:

P (‹µ æ ‹e) ≥= P (‹e æ ‹µ) ≥= P0 + Psin ”¸ ˚˙ ˝
CP violating

+Pcos ” + P3 (2.12)

where

P0 = sin2 ◊23
sin2 2◊13

(A ≠ 1)2 sin2[(A ≠ 1)�], (2.13)

P3 = –2 cos2 ◊23
sin2 2◊12

A2 sin2(A�), (2.14)

Psin ” = –
8Jcp

A(1 ≠ A) sin � sin(A�) sin[(1 ≠ A)�], (2.15)

Pcos ” = –
8Jcp cot ”CP

A(1 ≠ A) cos � sin(A�) sin[(1 ≠ A)�], (2.16)

and where
� = �m2

31L/4E, and A =
Ô

3GF Ne2E/�m2
31.

In the above, the CP phase ”CP appears (via Jcp) in the expressions for Psin ” (the CP-odd term)
which switches sign in going from ‹µ æ ‹e to the ‹µ æ ‹e channel, and Pcos ” (the CP-conserving
term) which does not. The matter effect also introduces a neutrino-antineutrino asymmetry, the
origin of which is simply the presence of electrons and absence of positrons in the Earth.

Recall that in Equation 2.2, the CP phase appears in the PMNS matrix through the mixing of
the ‹1 and ‹3 mass states. The physical characteristics of an appearance experiment are therefore
determined by the baseline and neutrino energy at which the mixing between the ‹1 and ‹3 states
is maximal, as follows:

L(km)
E‹(GeV) = (2n ≠ 1)fi

2
1

1.27 ◊ �m2
31(eV2) (2.17)

¥ (2n ≠ 1) ◊ 510 km/GeV (2.18)

where n = 1, 2, 3... denotes the oscillation nodes at which the appearance probability is maximal.

The dependences on E‹ of the oscillation probability for the LBNE baseline of L =1,300 km are
plotted on the right in Figures 2.3 and 2.4. The colored curves demonstrate the variation in the ‹e

appearance probability as a function of E‹ , for three different values of ”CP.
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osc maxima

  21

Experimental Infrastructure:
The FNAL → SURF Beam

● Beam requirements

– 1.2 MW, upgradeable to 2.3 MW 
(120GeV protons):

● POT/pulse: 7.5x1013 p

● Cycle time: 1.2 sec

● Uptime:       56%

– Direction 5.8° downward

– Wide-band spectrum covering the 
1st and 2nd oscillation maxima

● Upgrades from reference design

– PIPII: increase p throughput

– Horn current: 200 kA → 230 kA

– Target design: C → Be, shape

– Decay Pipe: 204 m → 250 m

– Horn design optimization

● Can use 60 - 80 GeV protons

– Increase flux at 2nd max

– Reduces high energy tail

– Need more POT to maintain power

Unoscillated

nµ flux at the

DUNE FD

With Horn 
Optimization

Ref : LBNE 
Collaboration,  

1307.7335 

CDR, Vol 2, DUNE Collaboration, 
1512.06148 [physics.ins-det] 

http://arxiv.org/abs/arXiv:1512.06148


Why 1300 km ?

.
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The DUNE Experimental Setup

● Oscillation Physics:

– Baseline of 1300 km

– A megawatt class beam covering 

the 1st and 2nd oscillation maxima

– A highly capable ND to constrain 

the FD event rate prediction

– A large (40 kt), high resolution 

FD deployed deep underground

– Exposure of 6-10 yr with    

~50% / 50% n / n running

– Sensitivity to dcp and the MH in 

the same experiment

● DUNE is designed to provide a broad program of n oscillation 

physics, n interaction physics, underground science, and physics 

beyond the standard model

1300 km

Phys.Rev. D91 (2015) 5, 052015 
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Baseline choice is guided by physics -  optimise the 
sensitivity to CPV and MH in a single experiment



Precision on standard mixing angles, phase

.

Chapter 3: Long-Baseline Neutrino Oscillation Physics 3–35
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Figure 3.19: The resolution of a measurement of sin2 ◊23 as a function of exposure assuming normal MH
and sin2 ◊23 = 0.45 from the current global fit. The shaded region represents the range in sensitivity
due to potential variations in the beam design.
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are required to measure ”CP with a resolution of 10¶ for the CDR reference beam design and the
optimized beam design, respectively, for a true value ”CP = 0.
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Figure 3.20: The resolution of a measurement of ”CP as a function of exposure assuming normal MH.
The resolution is shown for a CP-conserving value (”CP = 0) and the value that gives the maximum
CP violation for normal MH (”CP = 90¶). The shaded region represents the range in sensitivity due to
potential variations in the beam design.

The rich oscillation structure that can be observed by DUNE and the excellent particle identifi-
cation capability of the detector will enable precision measurement in a single experiment of all
the mixing parameters governing ‹1-‹3 and ‹2-‹3 mixing. Theoretical models probing quark-lepton
universality predict specific values of the mixing angles and the relations between them. The mix-
ing angle ◊13 is expected to be measured accurately in reactor experiments by the end of the decade
with a precision that will be limited by systematics. The combined statistical and systematic un-
certainty on the value of sin2 2◊23 from the Daya Bay reactor neutrino experiment, which has the
lowest systematics, is currently ≥ 6% (sin2 2◊13 = 0.084 ± 0.005), with a projected uncertainty of
≥3% by 2017 [27]. While the constraint on ◊13 from the reactor experiments will be important
in the early stages of DUNE for determining CP violation, measuring ”CP and determining the
◊23 octant, DUNE itself will eventually be able to measure ◊13 independently with a similar pre-
cision to that expected from the reactor experiments. Whereas the reactor experiments measure
◊13 using ‹̄e disappearance, DUNE will measure it through ‹e and ‹̄e appearance, thus providing
an independent constraint on the three-flavor mixing matrix. Figure 3.21 shows the resolution of
sin2 2◊13 as a function of exposure, assuming the true value is sin2 2◊13 = 0.085 from the current
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global fit.
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Figure 3.21: The resolution of a measurement of sin2 2◊13 as a function of exposure assuming normal
MH and sin2 2◊13 = 0.085 from the current global fit. The shaded region represents the range in
sensitivity due to potential variations in the beam design.

DUNE can also significantly improve the resolution on the larger mass splitting beyond the pre-
cision of current experiments. The current best-fit value for �m2

32 from MINOS is |�m2
32| =

(2.34 ± 0.09) ◊ 10≠3 eV2 (normal hierarchy) and |�m2
32| = (2.37+0.11

≠0.07) ◊ 10≠3 eV2 (inverted hierar-
chy) [28], with comparable precision achieved by both Daya Bay and T2K. The precision on �m2

31
will ultimately depend on tight control of energy-scale systematics. Figure 3.22 shows the expected
resolution of �m2

31 as a function of exposure, assuming the true value is �m2
31 = 2.457 ◊ 10≠3 eV2

from the current global fit.

3.6 E�ect of Systematic Uncertainties

Sensitivity studies presented in Section 3.2 test the ability to distinguish the expected number of ‹e

appearance and ‹µ disappearance events given a set of oscillation parameters from the expectations
given an alternate set of parameters. For example, the CP-violation and MH-sensitivity studies
test the spectral di�erences induced by shifting ”CP away from 0.0 and fi and by changing the
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Figure 3.22: The resolution of a measurement of �m2
31 as a function of exposure assuming the true

value is �m2
31 = 2.457 ◊ 10≠3 eV2 from the current global fit. The shaded region represents the range

in sensitivity due to potential variations in the beam design.
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L=1300 km

Red bands : Reference - 
optimised beam design


Delta CP 


precision better for 
vanishing CP phase 
(CPC) and worse for 
maximal CPV value (90 
degrees)


Range of delta CP 
resolution : 6-10 
degrees for 10 year 
run


CDR, Vol 2, DUNE Collaboration, 
1512.06148 [physics.ins-det] 

http://arxiv.org/abs/arXiv:1512.06148


CP Violation sensitivity

.

Red band : Reference - 
optimised beam design


Sensitivity to delta CP 
depends on  


systematics


statistics (300 
kt.MW.yr)


true value of delta CP, 
theta23, delta 
m^2_{31}, MH
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Figure 3.13: The significance with which the CP violation can be determined as a function of the value
of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right). The
shaded region represents the range in sensitivity due to potential variations in the beam design.

Table 3.7: The minimum exposure required to determine CP violation with a significance of 3‡ for 75%
of ”CP values or 5‡ for 50% of ”CP values for the CDR reference beam design and the optimized beam
design.

Significance CDR Reference Design Optimized Design
3‡ for 75% of ”CP values 1320 kt · MW · year 850 kt · MW · year
5‡ for 50% of ”CP values 810 kt · MW · year 550 kt · MW · year
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100% not possible - at least the CPC values (0,pi) are to be excluded !

CDR, Vol 2, DUNE Collaboration, 
1512.06148 [physics.ins-det] 
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Mass ordering sensitivity

.

Red band : Reference - 
optimised beam design


Sensitivity to mass 
ordering depends on  


systematics


statistics (300 
kt.MW.yr)


true value of delta CP, 
theta23, delta 
m^2_{31}, MH


> 5 sigma for almost all values of delta CP !

CDR, Vol 2, DUNE Collaboration, 
1512.06148 [physics.ins-det] 

A MAJOR GOAL OF DUNE IS TO ESTABLISH THAT 
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Figure 3.7 shows the significance with which the MH can be determined as a function of the value
of ”CP, for an exposure of 300 kt · MW · year, which corresponds to seven years of data (3.5 years in
neutrino mode plus 3.5 years in antineutrino mode) with a 40-kt detector and a 1.07-MW 80-GeV
beam. For this exposure, the MH is determined with a minimum significance of

Ò
�‰2 = 5 for

100% of the ”CP values for the optimized beam design and nearly 100% of ”CP values for the CDR
reference beam design. Figure 3.8 shows the significance with which the MH can be determined for
0% (most optimistic), 50% and 100% of ”CP values as a function of exposure. Minimum exposures
of approximately 400 kt · MW · year and 230 kt · MW · year are required to determine the MH with
a significance of

Ò
�‰2 = 5 for 100% of ”CP values for the CDR reference beam design and the

optimized beam design, respectively.
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Figure 3.7: The significance with which the mass hierarchy can be determined as a function of the
value of ”CP for an exposure of 300 kt · MW · year assuming normal MH (left) or inverted MH (right).
The shaded region represents the range in sensitivity due to potential variations in the beam design.

Figures 3.9, 3.10, and 3.11 show the variation in the MH sensitivity due to di�erent values of ◊23,
◊13, and �m2

31 within the allowed ranges. The value of ◊23 has the biggest impact on the sensitivity,
and the least favorable scenario corresponds to a true value of ”CP in which the MH asymmetry
is maximally o�set by the leptonic CP asymmetry, and where, independently, sin2 ◊23 takes on a
value at the low end of its experimentally allowed range.

Studies have indicated that special attention must be paid to the statistical interpretation of MH
sensitivities [21, 22]. In general, if an experiment is repeated many times, a distribution of �‰2

values will appear due to statistical fluctuations. It is usually assumed that the �‰2 metric follows
the expected chi-squared function for one degree of freedom, which has a mean of �‰2 and can be
interpreted using a Gaussian distribution with a standard deviation of

Ò
|�‰2|. In assessing the

MH sensitivity of future experiments, it is common practice to generate a simulated data set (for
an assumed true MH) that does not include statistical fluctuations. In this typical case, �‰2 is
reported as the expected sensitivity, where �‰2 is representative of the mean value of �‰2 that
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Standard neutrino oscillations and 
beyond that…



Flavor states are connected to mass states by : 

Each mass eigenstate propagates as 

Oscillation arises due to phase difference between mass eigenstates 

Oscillation probability

Two flavor case
✓
⌫e
⌫µ

◆
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
⌫1
⌫2

◆

eipz with p =
p

E2 �m2 ' E �m2/2E

�m2

2E
z

Bruno Pontecorvo

�m2 = m2
2 �m2

1

Peµ(L/E) = sin2 2✓ sin2(
�m2L

4E
)



Schrodinger equation in terms of flavour spinor (in the UR limit)

Neutrino flavor density matrix and commutator form 

Expand 2 by 2 Hermitian matrices in terms of Pauli matrices

Analogous to spin precession in a magnetic field

Visualizing oscillations

i⌅t

✓
⇤e
⇤µ

◆
= H

✓
⇤e
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◆
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�m2

2E

✓
� cos 2⇥ sin 2⇥
sin 2⇥ cos 2⇥

◆✓
⇤e
⇤µ

◆

Ṗ = �B ⇥ P

Mass 
axis

Flavour 
axis

� =
1

2
[Tr(�) + P · ⇥]

H =
�m2

2E
B · ⇥

B = (sin 2�, 0, cos 2�)

⇢ =

✓
�⌫e|⌫e⇥ �⌫e|⌫µ⇥
�⌫µ|⌫e⇥ �⌫µ|⌫µ⇥

◆
i@t⇢ = [H, ⇢]

Ref: Mehta, PRD79 (2009); 
see also Kim, Sze and Nussinov, PRD35 (1987); Kim, Kim and Sze, PRD37 (1988).



Standard interactions

Georg Raffelt, MPI Physics, Munich Smirnov Fest, GGI Florence, 28 June 2012

Neutrino Oscillations in Matter

Lincoln Wolfenstein

Neutrinos in a medium suffer flavor-dependent
refraction 

f

Zν ν ν ν

W

f

Typical density of Earth:  5 g/cm3 The potential changes sign for anti neutrinos

Georg Raffelt, MPI Physics, Munich Smirnov Fest, GGI Florence, 28 June 2012

Neutrino Oscillations in Matter

Lincoln Wolfenstein

Neutrinos in a medium suffer flavor-dependent
refraction 

f

Zν ν ν ν

W

f

Typical density of Earth:  5 g/cm3

L.Wolfenstein

• Elastic forward scattering 
dominates at low E (real 
part)


• Incoherent scattering 
cross section is usually 
very small


Earlier work : S. Nussinov, Phys.Lett.B63 (1976) 201



The MSW effect

Mixing becomes maximal when the 
diagonal elements vanish, i.e.  

A. SmirnovS. Mikheev

Ref: Bethe (1986)

⇢

m2

VC =
p
2GFne

⇥ =
�m2

2E

Complete conversion in the adiabatic limit !

Introduction to neutrino oscillations Two flavor case Neutrinos and Optics connection Geometric phases and neutrinos

Inclusion of matter effects (SM interactions)

In ordinary matter

Hν =

(

p +
m2

1 + m2
2

4p
+

VC

2
+ VN

)

I

+
1

2

(

VC − ω cos 2Θ ω sin 2Θ
ω sin 2Θ −(VC − ω cos 2Θ)

)

• VC =
√

2GF ne and VN = −
√

2GF nn/2 are the SM induced

potentials due to neutrino matter (e, n, p) interactions and ω = δm2/2p

vacuum case : VC , VN = 0

• Most dramatic effect is the MSW resonance due to vanishing
diagonal terms

Wolfenstein (1978), Mikhevev and Smirnov (1985)



Neutrino oscillations and present status

• Presently 
unknown 

• mass 
hierarchy

• CP phase 

• octant of 
theta23

Oscillation Parameter Best-fit value 3� range Precision (%)

sin2

✓
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Table 1: Best-fit values and the 3� ranges for the oscillation parameters used in our
analysis [4]. Also given is the precision which is defined as ratio (in percentage) of the
di↵erence of extreme values to the sum of extreme values of parameters in the 3� range.
Here NH (IH) refer to normal (inverted) hierarchy.

and E (especially above a GeV). This “one mass scale dominant” (OMSD) approximation
allows for a relatively simple exact analytic formula for the probability (as a function of
only three parameters ✓
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, ✓
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and �m
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31

) for the case of constant density matter [46] with no
approximation on s

13

, and it works quite well9. In order to systematically take into account
the e↵ect of small parameters, the perturbation theory approach is used. We review the
necessary formulation for calculation of probabilities that a↵ect the atmospheric neutrino
propagation using the perturbation theory approach [40].

In the ultra-relativistic limit, the neutrino propagation is governed by a Schrödinger-type
equation (see [53]) with an e↵ective Hamiltonian

H = H
vac

+H
SI

+H
NSI

, (6)

where H
vac

is the vacuum Hamiltonian and H
SI

,H
NSI

are the e↵ective Hamiltonians in
presence of SI alone and NSI respectively. Thus,
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1
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9
=

; , (7)

where A(x) =
p
2GFne(x) is the standard CC potential due to the coherent forward scat-

tering of neutrinos and ne is the electron number density. The three flavour neutrino mixing

9This approximation breaks down if the value of ✓13 is small since the terms containing �m2
21 can be

dropped only if they are small compared to the leading order term which contain ✓13. After the precise
measurement of the value of ✓13 by reactor experiments, this approximation is well justified. For multi-GeV
neutrinos, this condition (L/E ⌧ 104 km/GeV) is violated for only a small fraction of events with E ' 1
GeV and L � 104 km.

5

.

Ref: D. Forero, M. Tortola, and J. Valle (2014), 1405.7540. 



Neutrino oscillations require - 
physics beyond the SM

1. No right-handed neutrinos


2. Only Higgs doublet of SU(2)


3. Only renormalizable terms 

Neutrinos are massless in the SM with the three neutrino 
flavours distinguished by separate Lepton numbers 


Total lepton number distinguishes the neutrinos and anti-
neutrinos


Need to relax the above conditions 1 and/or 2 and/or 3 to 
generate neutrino mass 


Staying within SM is not an option ! 

Standard Model ingredients :

Beyond the new physics that gives rise to neutrino mass



Beyond the SM

Simplest extension of SM - 


introduce new right-handed sterile fermions into the SM so 
we have new fields with weird properties


New parameters needed - 


3 masses, 3 mixing angles and 1 phase (more if Majorana)


Very small masses suggest 


new mass mechanisms - seesaw mechanism or else fine 
tuning needed


Quark-lepton unification - quark and lepton mixing angles are 
very different



CP Violation in vacuum and matter 



C, P, T in neutrino oscillations

the Jarlskog invariant J = s12c12s23c23s13c
2
13 sin �. CP violation and T violation are related

in a neat manner.

The case of CPT�V (i.e., ACPT
↵� 6= 0) is not so simple as one can have CP violation, T

violation or both and apriori there is no straightforward connection between them

A

CP
↵� 6= A

T
↵� and A

CP
↵↵ 6= 0 , A

T
↵↵ 6= 0 . (4)

Moreover, the disappearance probabilities can also lead to non-zero CP asymmetries.

Imposing the unitarity condition, we obtain
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CP
ee + A

CP
eµ + A

CP
e⌧ = 0

A

CP
µe + A

CP
µµ + A

CP
µ⌧ = 0

A

CP
⌧e + A

CP
⌧µ + A

CP
⌧⌧ = 0 (5)

Obviously, these asymmetries present themselves in di↵erent channels (appearance and dis-
appearance) that can be employed to study CP violation. J is not the only source of CP
violation in this case.

2.2 Model for CPT Violation

CPT�V e↵ects that can be phenomenologically described by e↵ective interactions of the
form

LCPT�V = ⌫̄

↵
Lb

↵�
µ �

µ
⌫

�
L , (6)

where b

↵�
µ represents CPT�V. The propagation of neutrinos is governed by a Schrödinger-

type equation with the e↵ective Hamiltoninan in presence of CPT�V as follows

H = Hvac +HSI +HCPT�V , (7)

where Hvac is the vacuum Hamiltonian and HSI,HCPT�V are the e↵ective Hamiltonians in
presence of SI alone and CPT�V respectively. Note that the terms appearing in HCPT�V do
not depend upon the medium properties. In general, the dispersion relation gets modified
in present of HCPT�V. The index of refraction in the CPT�V scenario corresponds to the
existence of an intrinsic background field that isotropically permeates the vacuum. The
nature of this and other background fields has been extensively studied for theories with
Lorentz invariance violation (see [40] for a review). Thus,
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where A(x) = 2
p
2EGFne(x) is the standard CC potential due to the coherent forward scat-

tering of neutrinos and ne is the electron number density. We assume rotational invariance
so the nine parameters (aL)↵� denoting isotropic component of the CPT�V terms charac-
terize deviations from CPT�C. The three flavour neutrino mixing matrix U [⌘ U23 W13 U12

with W13 = U� U13 U †
� and U� = diag{1, 1, exp (i�)}] is characterized by three angles and a
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accelerator (with beam power of upto 1.2 MW) at Fermi National Accelerator Laboratory
(Fermilab) to produce high intensity neutrino source. For the far detector, a massive liquid
argon time-projection chamber (LArTPC) would be deployed deep underground at a depth
of 4850 feet at the Sanford Underground Research Facility located at the site of the former
Homestake Mine in Lead, South Dakota (where Ray Davis carried out the solar neutrino
experiment during 1967-1993) and is about 1300 km from the neutrino source at Fermilab. In
addition, a high precision near neutrino detector is planned at a distance of approximately
500 m from the target at Fermilab site. The baseline of 1300 km is expected to deliver
optimal sensitivity to CP violation, measurement of � and at the same time is long enough
to address the question of neutrino mass hierarchy [37–39]. It is worth mentioning that CP
violation can be established at 3� level if we consider DUNE for at least ⇠ 68% of CP phase
values [7,8] and it has been shown that a combination of di↵erent experiments can increase
this fraction to ⇠ 80% for reasonable exposures [38].

The plan of the article is as follows. We first briefly outline the NSI framework and give the
present constraints on NSI parameters in Sec. 2. We then go on to describe observable CP
asymmetry for the particular channel ⌫µ ! ⌫e relevant for DUNE both in vacuum and in
matter (SI and NSI) in Sec. 3. We present our results and discussions in Sec. 4 and discuss
the event rates obtained at DUNE far detector in Sec. 5. We end with conclusions in Sec. 6.

2 Framework

2.1 Preliminaries : CP, T and CPT asymmetries

C, P, T are discrete symmetries that refer to charge conjugation, parity and time reversal
respectively. Before going on to discuss the CPT�V case, let us review the relations between
the probabilities in the CPT�C scenario for appearance and disappearance channels. Let
us define the following asymmetries (involving neutrinos and antineutrinos) :

A

CP
↵� =

P↵� � P̄↵�

P↵� + P̄↵�
, A

T
↵� =

P↵� � P�↵

P↵� + P�↵
, A

CPT
↵� =

P↵� � P̄�↵

P↵� + P̄�↵
. (1)

where P↵� is the probability for transition ⌫↵ ! ⌫� and P̄↵� is the probability for transition
⌫̄↵ ! ⌫̄�. We first briefly review the case of CPT�C (i.e., ACPT

↵� = 0) which immediately
relates CP and T transformations and leads to

A

CP
↵� = �A

CP
�↵ and A

CP
↵↵ = 0 . (2)

Due to this, the CP asymmetry vanishes when ↵ = � in the limit of CPT�C. Further, if we
assume unitarity of the mixing matrix (i.e.,

P
� P↵� = 1 =

P
� P̄↵�) then all the CP and T

asymmetries in the appearance channels are equal to one another

A

CP
eµ = A

CP
µ⌧ = A

CP
⌧e / �P ,

A

T
eµ = A

T
µ⌧ = A

T
⌧e / �P , (3)

where �P is the single probability di↵erence in the appearance channel responsible for CP
(T) violation. �P contains the CP phase � appearing in the mixing matrix and is related to
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For three flavours, there can be only three independent CP asymmetries



CP violation in the appearance channel
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observables have been introduced [61] which can prove useful not only to establish whether
CP violation e↵ects arise purely due to the Dirac type CP phase or a combination of the
intrinsic and extrinsic CP phases but also to distinguish between the cases based on spectral
di↵erences. In the present work, we are interested in bringing out the contribution coming
from NSI towards the CP violation signal measured in terms of ACP
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below.
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can be used to obtain the position of peaks in Pµe (�) for L = 1300 km (relevant for DUNE).
n = 1, 2, 3, . . . leads to E

peak ⇠ 2.5, 0.8, 0.5 . . . GeV for the first few peaks in vacuum
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where Jr = J / sin � and � = �eµ + �, ! = �e⌧ + �. Note that only two parameters, "eµ and
"e⌧ enter in this leading order expression which implies that the rest of the NSI parameters
are expected to play a sub-dominant role. The approximate expression (Eq. 12) allows
us to illustrate the qualitative impact of the moduli and phases of NSI terms which can in
principle override e↵ects due to the vacuum oscillation phase � for certain choice of energies.
Also, the above expression is strictly valid when r��L/2 ⌧ 1 i.e. L and E are far away from
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experiments. For the case of DUNE, we have

r��L/2 = 0.125


1.267⇥ �m

2
21

7.6⇥ 10�5
eV

2

L

1300 km

1 GeV

E

�
< 1 (13)

Note that in addition to the vacuum oscillation frequency �L/2

�L/2 = 4.0


1.267⇥ �m

2
31

2.4⇥ 10�3
eV

2

L

1300 km

1 GeV

E

�
(14)

which has E�1-dependence on energy, matter (SI and NSI) introduces phase shifts such as
rA�L/2 (using A = 0.756⇥ 10�4

eV

2
⇢ (g/cc) E (GeV ))

rA�L/2 = 0.4


1.267⇥ 0.756⇥ 10�4 ⇢

3.0 g/cc

L

1300 km

�
, (15)

6

observables have been introduced [61] which can prove useful not only to establish whether
CP violation e↵ects arise purely due to the Dirac type CP phase or a combination of the
intrinsic and extrinsic CP phases but also to distinguish between the cases based on spectral
di↵erences. In the present work, we are interested in bringing out the contribution coming
from NSI towards the CP violation signal measured in terms of ACP

µe (�).

Let us consider the ⌫µ ! ⌫e transition for propagation in vacuum and matter described
below.

3.1 Review of Pµe (�) in vacuum :

In vacuum, the oscillation probability for the ⌫µ ! ⌫e channel is given by

Pµe (�) = 4(c213s
2
23s

2
13 + J sin r��L) sin

2 �L

2

+ 2(c12c23c
2
13s12s23s13 cos � � c

2
13s

2
12s

2
23s

2
13) sin r��L sin�L

+ 4(c212c
2
23c

2
13s

2
12 + c

2
13s

4
12s

2
23s

2
13 � 2c12c23c

2
13s

3
12s23s13 cos � � J sin�L)sin2 r��L

2

+ 8(c12c23c
2
13s12s23s13 cos � � c

2
13s

2
12s

2
23s

2
13) sin

2 r��L

2
sin2 �L

2
(10)

where J = c12c23c
2
13s12s23s13 sin � is an invariant that quantifies CP violation in the leptonic

sector and is referred to as the Jarlskog invariant. The abbreviations sij = sin ✓ij, cij =
cos ✓ij are used in Eq. 10. For the CP-transformed channel (⌫̄µ ! ⌫̄e), we need to replace
� ! �� in Eq. 10 to obtain P̄µe (�).

The maximal 1� 3 mixing condition

L

E

= (2n� 1)
⇡

2

1

1.267⇥ �m

2
31(eV

2)
, (11)

can be used to obtain the position of peaks in Pµe (�) for L = 1300 km (relevant for DUNE).
n = 1, 2, 3, . . . leads to E

peak ⇠ 2.5, 0.8, 0.5 . . . GeV for the first few peaks in vacuum
probability.

3.2 Pµe (�) in matter in presence of non-standard interactions :

The approximate expression for oscillation probability for ⌫µ ! ⌫e for NSI case can be
obtained by retaining terms of O("↵�s13), O("↵�r�) , O(s13r�), O(r2�) and neglecting the
higher order terms,

Pµe (�) ' 4s213s
2
23


sin2 (1� rA)�L/2

(1� rA)2

�

+ 8s13s23c23(|"eµ|c23c� � |"e⌧ |s23c!)rA

cos

�L

2

sin rA�L/2

rA

sin (1� rA)�L/2

(1� rA)

�

+ 8s13s23c23(|"eµ|c23s� � |"e⌧ |s23s!)rA

sin

�L

2

sin rA�L/2

rA

sin (1� rA)�L/2

(1� rA)

�

5

In the standard three flavour paradigm, there is only one CP phase
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where sij = sin ✓ij, cij = cos ✓ij. While, in addition, two Majorana phases are also possible,
these are ignored as they play no role in neutrino oscillations. This particular parameter-
isation along with the fact of H
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where we have defined dimensionless ratios
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where ✏↵� (⌘ |✏↵�| ei�↵�) are complex. For atmospheric and long baseline neutrinos, �L '
O(1) holds and rAL ⇠ O(1) for a large range of the E and L values considered here. The
small quantities are r� ' 0.03 and ✏̃↵�. If We decompose H̃ into two parts : H̃ = H̃
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while H̃I contains the other two terms (on the RHS of Eq. (9)) which represent corrections
due to non-zero r� and the non-zero NSI parameters ✏̃↵� respectively. Upon neglecting terms
like r�s13, r�s
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Figure 1: Comparison of vacuum and matter (SI) asymmetry, ACP
µe (�) for L = 1300 km. The vacuum

(matter, SI) case is shown in brown (cyan) for three di↵erent values of � and for NH as well as IH. The
solid, dashed and dotted lines correspond to � = 0, � = ⇡/2 and � = �⇡/2 respectively.

4 Results and Discussion

Let us first discuss the case of vacuum. Using the CP-odd terms in Eq. 10, the numerator
in the CP asymmetry (defined in Eq. 9) �Pµe (�) is given by 8
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to have observable e↵ects, we should have sizeable interference terms that involve the CP
violating phase �. This implies that both �L/2 as well as r��L/2 must be taken into account.
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µe (�) vanishes as � ! 0, ⇡ and when � = ±⇡/2, ACP
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values. Also it can be noted that the normalised A
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Using Eq. 12, the numerator in the CP asymmetry (Eq. 9) for the SI ("↵� ! 0 limit) can
be expressed in a compact form
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comes from terms proportional to r� in this case. In contrast to the vacuum expression, the
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CP
µe (0) 6= 0 and this can be attributed to the fake CP e↵ects arising due to matter being

CP asymmetric. In the limit rA ! 0, one would expect non-zero vacuum terms to remain
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where sij = sin ✓ij, cij = cos ✓ij. While, in addition, two Majorana phases are also possible,
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small quantities are r� ' 0.03 and ✏̃↵�. If We decompose H̃ into two parts : H̃ = H̃

0

+ H̃I

such that the zeroth order term H̃
0

provides the e↵ective two flavour limit with rA 6= 0 and
s

13

6= 0 but r� = 0, i.e.,

H̃
0

= �

0

@
rA(x) + s

2

13

0 c

13

s

13

e

�i�

0 0 0
c

13

s

13

e

i� 0 c

2

13

1

A
, (11)

while H̃I contains the other two terms (on the RHS of Eq. (9)) which represent corrections
due to non-zero r� and the non-zero NSI parameters ✏̃↵� respectively. Upon neglecting terms
like r�s13, r�s

2

13

, we get an approximate form for H̃I , viz.,

H̃
I

⇡ �

"
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0

@
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12

s

12

0
c

12

s

12

c

2
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0
0 0 0
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A+ rA

0
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?
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#
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Figure 1: Comparison of vacuum and matter (SI) asymmetry, ACP
µe (�) for L = 1300 km. The vacuum

(matter, SI) case is shown in brown (cyan) for three di↵erent values of � and for NH as well as IH. The
solid, dashed and dotted lines correspond to � = 0, � = ⇡/2 and � = �⇡/2 respectively.

4 Results and Discussion

Let us first discuss the case of vacuum. Using the CP-odd terms in Eq. 10, the numerator
in the CP asymmetry (defined in Eq. 9) �Pµe (�) is given by 8

�Pµe (�) = 8J

sin(r��L) sin

2 �L

2
� sin(�L) sin2 r��L

2

�

= 4 sin � Jr [sin�L/2 sin r��L/2 sin (1� r�)�L/2] , (16)

where the second line is obtained after rearranging the terms in the first line. In order
to have observable e↵ects, we should have sizeable interference terms that involve the CP
violating phase �. This implies that both �L/2 as well as r��L/2 must be taken into account.
Naturally, the A

CP
µe (�) vanishes as � ! 0, ⇡ and when � = ±⇡/2, ACP

µe (�) attains maximal
values. Also it can be noted that the normalised A

CP
µe (�) grows linearly with L/E.

Using Eq. 12, the numerator in the CP asymmetry (Eq. 9) for the SI ("↵� ! 0 limit) can
be expressed in a compact form

�Pµe (�) = 8 r�J
sin rA�L/2

rA
[⇥� cot � cos�L/2 +⇥+ sin�L/2] , (17)

where ⇥± = sin[(rA � 1)�L/2]/(rA � 1) ± sin[(rA + 1)�L/2]/(rA + 1). The CP sensitivity
comes from terms proportional to r� in this case. In contrast to the vacuum expression, the
A

CP
µe (0) 6= 0 and this can be attributed to the fake CP e↵ects arising due to matter being

CP asymmetric. In the limit rA ! 0, one would expect non-zero vacuum terms to remain

8The denominator
P

Pµe (�) has the e↵ect of rescaling the asymmetry curves.
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observables have been introduced [61] which can prove useful not only to establish whether
CP violation e↵ects arise purely due to the Dirac type CP phase or a combination of the
intrinsic and extrinsic CP phases but also to distinguish between the cases based on spectral
di↵erences. In the present work, we are interested in bringing out the contribution coming
from NSI towards the CP violation signal measured in terms of ACP

µe (�).

Let us consider the ⌫µ ! ⌫e transition for propagation in vacuum and matter described
below.

3.1 Review of Pµe (�) in vacuum :

In vacuum, the oscillation probability for the ⌫µ ! ⌫e channel is given by

Pµe (�) = 4(c213s
2
23s

2
13 + J sin r��L) sin

2 �L

2

+ 2(c12c23c
2
13s12s23s13 cos � � c

2
13s

2
12s

2
23s

2
13) sin r��L sin�L

+ 4(c212c
2
23c

2
13s

2
12 + c

2
13s

4
12s

2
23s

2
13 � 2c12c23c

2
13s

3
12s23s13 cos � � J sin�L)sin2 r��L

2

+ 8(c12c23c
2
13s12s23s13 cos � � c

2
13s

2
12s

2
23s

2
13) sin

2 r��L

2
sin2 �L

2
(10)

where J = c12c23c
2
13s12s23s13 sin � is an invariant that quantifies CP violation in the leptonic

sector and is referred to as the Jarlskog invariant. The abbreviations sij = sin ✓ij, cij =
cos ✓ij are used in Eq. 10. For the CP-transformed channel (⌫̄µ ! ⌫̄e), we need to replace
� ! �� in Eq. 10 to obtain P̄µe (�).

The maximal 1� 3 mixing condition

L

E

= (2n� 1)
⇡

2

1

1.267⇥ �m

2
31(eV

2)
, (11)

can be used to obtain the position of peaks in Pµe (�) for L = 1300 km (relevant for DUNE).
n = 1, 2, 3, . . . leads to E

peak ⇠ 2.5, 0.8, 0.5 . . . GeV for the first few peaks in vacuum
probability.

3.2 Pµe (�) in matter in presence of non-standard interactions :

The approximate expression for oscillation probability for ⌫µ ! ⌫e for NSI case can be
obtained by retaining terms of O("↵�s13), O("↵�r�) , O(s13r�), O(r2�) and neglecting the
higher order terms,

Pµe (�) ' 4s213s
2
23


sin2 (1� rA)�L/2

(1� rA)2

�

+ 8s13s23c23(|"eµ|c23c� � |"e⌧ |s23c!)rA

cos

�L

2

sin rA�L/2

rA

sin (1� rA)�L/2

(1� rA)

�

+ 8s13s23c23(|"eµ|c23s� � |"e⌧ |s23s!)rA

sin

�L

2

sin rA�L/2

rA

sin (1� rA)�L/2

(1� rA)

�
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Non-standard Interactions

• Oscillation parameters such as the mixing angles and mass-squared 
splittings have been measured with great precision 

• New physics interactions were initially proposed to provide an 
alternative to the oscillation formalism. However, this is now ruled out 
and we can study new physics effects as sub-leading effects in the 
discussion of oscillation formalism 

• The new physics effects can impact determination of standard oscillation 
parameters and lead to more complicated parameter degeneracies 

dard Model amplitude. In view of the excellent agreement of data with standard flavour
conversion via oscillations, we would like to explore the extent to which NSI (incorporated
into the Lagrangian phenomenologically via small parameters) is empirically viable, with
specific focus on atmospheric neutrino signals in future detectors. NSI in the context of
atmospheric neutrinos has been studied by various authors [15–19]. Also there are studies
pertaining to other new physics scenarios using atmospheric neutrinos such as CPT viola-
tion [20, 21], violation of the equivalence principle [22], large extra dimension models [23]
and sterile neutrinos [24–26].

Finally, as an application, we discuss how NSI impacts the determination of the correct
octant for ✓

23

. Typically, Earth matter e↵ects have been exploited to break the degeneracy
associated with this parameter [27–29]. Here we discuss, via an example, how a particular
NSI parameter ✏µ⌧ interferes with the determination of the correct octant for atmospheric
neutrinos that is nominally sought to be e↵ected through the study of the ⌫µ ! ⌫µ channel.
A detailed study of the octant determination in presence of NSI parameters for the case of
atmospheric neutrinos is currently under progress [30].

The plan of the article is as follows. We first briefly outline the NSI framework in Sec. 2
and subsequently discuss the neutrino oscillation probabilities in presence of NSI using
the perturbation theory approach (in Sec. 3). We describe the features of the neutrino
oscillograms in Sec. 4. We give the details of our analysis in Sec. 5 and the discussion on
events generated for the two detector types in Sec. 6. Finally, we conclude in Sec. 7.

2 Neutrino NSI Framework: relevant parameters and present
constraints

As in the case of standard weak interactions, a wide class of “new physics scenarios” can be
conveniently parameterised in a model independent way at low energies (E ⌧ MEW , where
MEW is the electroweak scale) by using e↵ective four-fermion interactions. In general,
NSI can impact the neutrino oscillation signals via two kinds of interactions : (a) charged
current (CC) interactions (b) neutral current (NC) interactions. However, CC interactions
a↵ect processes only at the source or the detector and these are are clearly discernible at
near detectors (see for example, [31,32]). On the other hand, the NC interactions a↵ect the
propagation of neutrinos which can be studied only at far detectors. Due to this decoupling,
the two can be treated in isolation. Usually, it is assumed that the CC NSI terms (e.g.,
of the type (⌫̄��µ

PLl↵)(f̄L�µPCf
0
L) with f, f

0 being the components of a weak doublet) are
more tightly constrained than the NC terms and, hence, are not considered. It turns out,
though, that, in specific models, the two can be of comparable strengths [33]. However,
since we are interested in NSI that alter the propagation of neutrinos, we shall consider the
NC type of interactions alone.

The e↵ective Lagrangian describing the NC type neutrino NSI of the type (V �A)(V ±A)
is given by3

LNSI = �2
p
2GF ✏

f C
↵� [⌫̄↵�

µ
PL⌫�] [f̄�µPCf ] , (1)

3One could think that other Dirac structures generated by intermediate scalar (S), pseudoscalar (P ) or
tensor (T ) fields may also be there. However, these would only give rise to subdominant e↵ects.
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dard Model amplitude. In view of the excellent agreement of data with standard flavour
conversion via oscillations, we would like to explore the extent to which NSI (incorporated
into the Lagrangian phenomenologically via small parameters) is empirically viable, with
specific focus on atmospheric neutrino signals in future detectors. NSI in the context of
atmospheric neutrinos has been studied by various authors [15–19]. Also there are studies
pertaining to other new physics scenarios using atmospheric neutrinos such as CPT viola-
tion [20, 21], violation of the equivalence principle [22], large extra dimension models [23]
and sterile neutrinos [24–26].

The plan of the article is as follows. We first briefly outline the NSI framework in Sec. 2
and subsequently discuss the neutrino oscillation probabilities in presence of NSI using
the perturbation theory approach (in Sec. 3). We describe the features of the neutrino
oscillograms in Sec. 4. We give the details of our analysis in Sec. 5 and the discussion on
events generated for the two detector types in Sec. 6. Finally, we conclude in Sec. 7.

2 Neutrino NSI Framework: relevant parameters and present

constraints

As in the case of standard weak interactions, a wide class of “new physics scenarios” can be
conveniently parameterised in a model independent way at low energies (E ⌧ MEW , where
MEW is the electroweak scale) by using e↵ective four-fermion interactions. In general,
NSI can impact the neutrino oscillation signals via two kinds of interactions : (a) charged
current (CC) interactions (b) neutral current (NC) interactions. However, CC interactions
a↵ect processes only at the source or the detector and these are are clearly discernible at
near detectors (see for example, [27,28]). On the other hand, the NC interactions a↵ect the
propagation of neutrinos which can be studied only at far detectors. Due to this decoupling,
the two can be treated in isolation. Usually, it is assumed that the CC NSI terms (e.g.,
of the type (⌫̄��µ

PLl↵)(f̄L�µPCf
0
L) with f, f

0 being the components of a weak doublet) are
more tightly constrained than the NC terms and, hence, are not considered. It turns out,
though, that, in specific models, the two can be of comparable strengths [29]. However,
since we are interested in NSI that alter the propagation of neutrinos, we shall consider the
NC type of interactions alone.

The e↵ective Lagrangian describing the NC type neutrino NSI of the type (V �A)(V ±A)
is given by3

LNSI = �2
p
2GF ✏

f C
↵� [⌫̄↵�

µ
PL⌫�] [f̄�µPCf ] , (1)

where GF is the Fermi constant, ⌫↵, ⌫� are neutrinos of di↵erent flavours, and f is a first
generation SM fermion (e, u, d) 4. The chiral projection operators are given by PL = (1 �
�

5

)/2 and PC = (1 ± �

5

)/2. If the NSI arises at scale MNP � MEW from some higher
dimensional operators (of order six or higher), it would imply a suppression of at least
✏

fC
↵� ' (MEW/MNP )2 (for MNP ⇠ 1 TeV , we have ✏

fC
↵� ' 10�2). However, such a naive

dimensional analysis argument breaks down if the new physics sector is strongly interacting

3One could think that other Dirac structures generated by intermediate scalar (S), pseudoscalar (P ) or
tensor (T ) fields may also be there. However, these would only give rise to subdominant e↵ects.

4Coherence requires that the flavour of the background fermion (f) is preserved in the interaction. Second
or third generation fermions do not a↵ect oscillation experiments since matter does not contain them.
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Non-standard interactions

Matter NSIs

Three-flavor neutrino evolution equation with matter NSIs:

i
d

dt

⎛
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⎜

⎝
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⎟

⎟

⎠

=
1
2E

⎡

⎢

⎢

⎣

U

⎛

⎜

⎜

⎝

0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

⎞

⎟

⎟

⎠

U† + A

⎛

⎜

⎜

⎝

1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

νe

νµ

ντ

⎞

⎟

⎟

⎠

Wolfenstein (1978); Valle (1987); Guzzo, Masiero, Petcov (1991); Roulet (1991)

In general, this gives rise to rather cumbersome neutrino transition probabilities.
T. Ohlsson (KTH) Non-Standard Neutrino Interactions (IPP12) 12 / 29

T. Ohlsson 

Flavour dependent refraction in the NC piece 
(diagonal as well as off-diagonal NSI terms)

Oscillation Parameter Best-fit value 3� range Precision (%)

sin2

✓

12

/10�1 3.23 2.78 - 3.75 14.85
sin2

✓

23

/10�1 (NH) 5.67 (4.67)a 3.92 - 6.43 24.25
sin2

✓

23

/10�1 (IH) 5.73 4.03 - 6.40 22.72
sin2

✓

13

/10�2 (NH) 2.34 1.77 - 2.94 24.84
sin2

✓

13

/10�2 (IH) 2.40 1.83 - 2.97 23.75
�m

2

21

[10�5 eV2] 7.60 7.11 - 8.18 7.00
|�m2

31

| [10�3 eV2] (NH) 2.48 2.30 - 2.65 7.07
|�m2

31

| [10�3 eV2] (IH) 2.38 2.30 - 2.54 5.00
�/⇡ (NH) 1.34 0.0 - 2.0 -
�/⇡ (IH) 1.48 0.0 - 2.0 -

aThis is a local minimum in the first octant of ✓
23

with ��

2 = 0.28 with respect
to the global minimum.

Table 1: Best-fit values and the 3� ranges for the oscillation parameters used in our
analysis [4]. Also given is the precision which is defined as ratio (in percentage) of the
di↵erence of extreme values to the sum of extreme values of parameters in the 3� range.
Here NH (IH) refer to normal (inverted) hierarchy.

and E (especially above a GeV). This “one mass scale dominant” (OMSD) approximation
allows for a relatively simple exact analytic formula for the probability (as a function of
only three parameters ✓

23

, ✓

13

and �m

2

31

) for the case of constant density matter [46] with no
approximation on s

13

, and it works quite well9. In order to systematically take into account
the e↵ect of small parameters, the perturbation theory approach is used. We review the
necessary formulation for calculation of probabilities that a↵ect the atmospheric neutrino
propagation using the perturbation theory approach [40].

In the ultra-relativistic limit, the neutrino propagation is governed by a Schrödinger-type
equation (see [53]) with an e↵ective Hamiltonian

H = H
vac

+H
SI

+H
NSI

, (6)

where H
vac

is the vacuum Hamiltonian and H
SI

,H
NSI

are the e↵ective Hamiltonians in
presence of SI alone and NSI respectively. Thus,

H =
1

2E

8
<

:U

0

@
0

�m

2

21

�m

2

31

1

AU † + A(x)

0

@
1 + ✏ee ✏eµ ✏e⌧

✏eµ
?

✏µµ ✏µ⌧

✏e⌧
?

✏µ⌧
?

✏⌧⌧

1

A

9
=

; , (7)

where A(x) =
p
2GFne(x) is the standard CC potential due to the coherent forward scat-

tering of neutrinos and ne is the electron number density. The three flavour neutrino mixing

9This approximation breaks down if the value of ✓13 is small since the terms containing �m2
21 can be

dropped only if they are small compared to the leading order term which contain ✓13. After the precise
measurement of the value of ✓13 by reactor experiments, this approximation is well justified. For multi-GeV
neutrinos, this condition (L/E ⌧ 104 km/GeV) is violated for only a small fraction of events with E ' 1
GeV and L � 104 km.

5
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Blennow et al (2008)
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Direct bounds on matter NSI 

dard Model amplitude. In view of the excellent agreement of data with standard flavour
conversion via oscillations, we would like to explore the extent to which NSI (incorporated
into the Lagrangian phenomenologically via small parameters) is empirically viable, with
specific focus on atmospheric neutrino signals in future detectors. NSI in the context of
atmospheric neutrinos has been studied by various authors [15–19]. Also there are studies
pertaining to other new physics scenarios using atmospheric neutrinos such as CPT viola-
tion [20, 21], violation of the equivalence principle [22], large extra dimension models [23]
and sterile neutrinos [24–26].

Finally, as an application, we discuss how NSI impacts the determination of the correct
octant for ✓

23

. Typically, Earth matter e↵ects have been exploited to break the degeneracy
associated with this parameter [27–29]. Here we discuss, via an example, how a particular
NSI parameter ✏µ⌧ interferes with the determination of the correct octant for atmospheric
neutrinos that is nominally sought to be e↵ected through the study of the ⌫µ ! ⌫µ channel.
A detailed study of the octant determination in presence of NSI parameters for the case of
atmospheric neutrinos is currently under progress [30].

The plan of the article is as follows. We first briefly outline the NSI framework in Sec. 2
and subsequently discuss the neutrino oscillation probabilities in presence of NSI using
the perturbation theory approach (in Sec. 3). We describe the features of the neutrino
oscillograms in Sec. 4. We give the details of our analysis in Sec. 5 and the discussion on
events generated for the two detector types in Sec. 6. Finally, we conclude in Sec. 7.

2 Neutrino NSI Framework: relevant parameters and present
constraints

As in the case of standard weak interactions, a wide class of “new physics scenarios” can be
conveniently parameterised in a model independent way at low energies (E ⌧ MEW , where
MEW is the electroweak scale) by using e↵ective four-fermion interactions. In general,
NSI can impact the neutrino oscillation signals via two kinds of interactions : (a) charged
current (CC) interactions (b) neutral current (NC) interactions. However, CC interactions
a↵ect processes only at the source or the detector and these are are clearly discernible at
near detectors (see for example, [31,32]). On the other hand, the NC interactions a↵ect the
propagation of neutrinos which can be studied only at far detectors. Due to this decoupling,
the two can be treated in isolation. Usually, it is assumed that the CC NSI terms (e.g.,
of the type (⌫̄��µ

PLl↵)(f̄L�µPCf
0
L) with f, f

0 being the components of a weak doublet) are
more tightly constrained than the NC terms and, hence, are not considered. It turns out,
though, that, in specific models, the two can be of comparable strengths [33]. However,
since we are interested in NSI that alter the propagation of neutrinos, we shall consider the
NC type of interactions alone.

The e↵ective Lagrangian describing the NC type neutrino NSI of the type (V �A)(V ±A)
is given by3

LNSI = �2
p
2GF ✏

f C
↵� [⌫̄↵�

µ
PL⌫�] [f̄�µPCf ] , (1)

3One could think that other Dirac structures generated by intermediate scalar (S), pseudoscalar (P ) or
tensor (T ) fields may also be there. However, these would only give rise to subdominant e↵ects.

2

The constraints involving muon neutrinos are at least an order of magnitude stronger (cour-
tesy the NuTeV and CHARM scattering experiments) than those involving electron and
tau neutrino [35]. (b) With the assumption that the errors on individual NSI terms are
uncorrelated, the authors in Ref. [33] deduce model-independent bounds on e↵ective NC
NSI terms

✏↵� ⇠<
(

X

C=L,R

[(✏eC↵�)
2 + (3✏uC↵� )

2 + (3✏dC↵�)
2]

)
1/2

, (4)

which, for neutral Earth matter, leads to

|✏↵�| <

0

@
4.2 0.33 3.0
0.33 0.068 0.33
3.0 0.33 21

1

A
. (5)

Note that the values mentioned in Eq. (5) are larger by one or two orders of magnitude
than the overly restrictive bounds of Eq. (3), which, of course, need not be applicable.

Apart from the model independent theoretical bounds, two experiments have used the neu-
trino data to constrain NSI parameters. The SK NSI search in atmospheric neutrinos
crossing the Earth found no evidence in favour of NSI and the study led to upper bounds on
NSI parameters [36] given by |✏µ⌧ | < 0.033, |✏⌧⌧ � ✏µµ| < 0.147 (at 90% CL) in a two flavour
hybrid model [5] 7. The o↵-diagonal NSI parameter ✏µ⌧ is constrained �0.20 < ✏µ⌧ < 0.07
(at 90% CL) from MINOS data in the framework of two flavour neutrino oscillations [37,38].
However the bounds are still rather uncertain 8 and hence we choose to use less restrictive
values than the ones mentioned above. Moreover, we note that the existing experimental
bounds depend upon various assumptions such as the two flavour approximation. Addi-
tionally, the allowed ranges of NSI parameters have been recently extracted using global
analysis of neutrino data in Ref. [39]. Following the other studies on neutrino NSI in prop-
agation [40], we will use a value of |✏↵�| = 0.15 for the parameters ✏µ⌧ , ✏eµ and ✏e⌧ appearing
in the present work. This value is eminently in agreement with Eq. (5).

3 Neutrino oscillation probability in matter with NSI

The purpose of the analytic expressions presented here is to understand the features in
the probability in the presence of NSI. All the plots presented in this paper are obtained
numerically by solving the full three flavour neutrino propagation equations using the PREM
density profile of the Earth, and the latest values of the neutrino parameters as obtained
from global fits (see Table 1).

The analytic computation of probability expressions in presence of SI [41–47] as well as
NSI [40, 48–52] has been carried out for di↵erent experimental settings by various authors.
Note that, for atmospheric neutrinos, one can safely neglect the smaller mass squared dif-
ference �m

2

21

in comparison to �m

2

31

since �m

2

21

L/4E ⌧ 1 for a large range of values of L

7The SK collaboration uses a di↵erent normalization (nd) while writing the e↵ective NSI parameter (see
Eq. (2)) and hence we need to multiply the bounds mentioned in Ref. [36] by a factor of 3.

8The experimental uncertainties (statistical and systematic) are substantial for the NSI parameters.
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more restrictive

found no evidence in favour of NSI and the study led to upper bounds on NSI parameters [27]
given by |✏µ⌧ | < 0.033, |✏⌧⌧ � ✏µµ| < 0.147 (at 90% CL) in a two flavour hybrid model [22]5.
The o↵-diagonal NSI parameter ✏µ⌧ is constrained �0.20 < ✏µ⌧ < 0.07 (at 90% CL) from
MINOS data in the framework of two flavour neutrino oscillations [28, 29].

We will be interested in particular channels ⌫µ ! ⌫e (and the CP transformed channel, ⌫̄µ !
⌫̄e) where only two of the NSI parameters (✏eµ, ✏e⌧ ) appear in the second order expression.
Taking into account the constraints from neutrino experiments, we can write (see also [30])
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@
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A

. (8)

We will use the values ✏eµ, ✏e⌧ ⇠ 0.1 which are consistent with Eq. 8. For comparison with
even smaller values, we also use values that are an order of magnitude lower than 0.1. In
addition, we explore the collective e↵ect of the relevant NSI parameters (✏eµ, ✏e⌧ ) that a↵ect
the particular channel ⌫µ ! ⌫e (and ⌫̄µ ! ⌫̄e).

All the plots presented in this paper are obtained numerically by solving the full three
flavour neutrino propagation equations using the PREM [31] density profile of the Earth,
and the latest values of the neutrino parameters as obtained from global fits (see Table 1).

Oscillation Parameter Best-fit value 3� range Precision (%)

sin2
✓12/10�1 3.23 2.78 - 3.75 14.85

sin2
✓23/10�1 (NH) 5.67 (4.67)a 3.92 - 6.43 24.25

sin2
✓23/10�1 (IH) 5.73 4.03 - 6.40 22.72

sin2
✓13/10�2 (NH) 2.34 1.77 - 2.94 24.84

sin2
✓13/10�2 (IH) 2.40 1.83 - 2.97 23.75

�m

2
21 [10

�5 eV2] 7.60 7.11 - 8.18 7.00
|�m2

31| [10�3 eV2] (NH) 2.48 2.30 - 2.65 7.07
|�m2

31| [10�3 eV2] (IH) 2.38 2.30 - 2.54 5.00
�/⇡ (NH) 1.34 0.0 - 2.0 -
�/⇡ (IH) 1.48 0.0 - 2.0 -

aThis is a local minimum in the first octant of ✓23 with ��

2 = 0.28 with respect
to the global minimum.

Table 1: Best-fit values and the 3� ranges for the oscillation parameters used in our
analysis [3]. Also given is the precision which is defined as ratio (in percentage) of the
di↵erence of extreme values to the sum of extreme values of parameters in the 3� range.
Here NH (IH) refer to normal (inverted) hierarchy.

5The SK collaboration uses a di↵erent normalization (nd) while writing the e↵ective NSI parameter (see
Eq. (2)) and hence we need to multiply the bounds mentioned in Ref. [27] by a factor of 3.
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as can happen in a variety of models. We shall, hence, admit even larger ✏

fC
↵� as long as

these are consistent with all current observations. In general, NSI terms can be complex.
Naively, SU(2) invariance would dictate that operators involving ⌫Li must be accompanied
by ones containing the corresponding charged lepton field, thereby leading to additional CC
interactions. This, however, can be avoided by applying to SU(2) breaking and/or invoking
multiple fields and interactions in the heavy (or hidden) sector. Rather than speculate
about the origin of any such mechanism, we assume here (as in much of the literature) that
no such CC terms exist.

The new NC interaction terms can a↵ect the neutrino oscillation physics either by causing
the flavour of neutrino to change (⌫↵ + f ! ⌫� + f) i.e., flavour changing (FC) interaction
or, by having a non-universal scattering amplitude of NC for di↵erent neutrino flavours
i.e., flavour preserving (FP) interaction. At the level of the underlying Lagrangian, NSI
coupling of the neutrino can be to e, u, d. However, from a phenomenological point of view,
only the sum (incoherent) of all these individual contributions (from di↵erent scatterers)
contributes to the coherent forward scattering of neutrinos on matter. If we normalize5 to
ne, the e↵ective NSI parameter for neutral Earth matter6 is

✏↵� =
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f=e,u,d

nf

ne
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↵� = ✏

e
↵� + 2✏u↵� + ✏

d
↵� +

nn

ne

(2✏d↵� + ✏

u
↵�) = ✏

e
↵� + 3✏u↵� + 3✏d↵� , (2)

where nf is the density of fermion f in medium crossed by the neutrino and n refers to
neutrons. Also, ✏f↵� = ✏

fL
↵� + ✏

fR
↵� which encodes the fact that NC type NSI matter e↵ects are

sensitive to the vector sum of NSI couplings.

Let us, now, discuss the constraints on the NC type NSI parameters. As mentioned above,
the combination that enters oscillation physics is given by Eq. (2). The individual NSI terms
such as ✏fL↵� or ✏fR↵� are constrained in any experiment (keeping only one of them non-zero at
a time) and moreover the coupling is either to e, u, d individually [30]. In view of this, it is
not so straightforward to interpret those bounds in terms of an e↵ective ✏↵�. There are two
ways : (a) One could take a conservative approach and use the most stringent constraint in
the individual NSI terms (say, use |✏uµ⌧ |) to constrain the e↵ective term (say, |✏µ⌧ |) in Eq. (2)
and that leads to

|✏↵�| <

0

@
0.06 0.05 0.27
0.05 0.003 0.05
0.27 0.05 0.16

1

A
. (3)

The constraints involving muon neutrinos are at least an order of magnitude stronger (cour-
tesy the NuTeV and CHARM scattering experiments) than those involving electron and
tau neutrino [31]. (b) With the assumption that the errors on individual NSI terms are
uncorrelated, the authors in Ref. [29] deduce model-independent bounds on e↵ective NC
NSI terms

✏↵� ⇠<
(

X

C=L,R

[(✏eC↵�)
2 + (3✏uC↵� )

2 + (3✏dC↵�)
2]

)
1/2

, (4)

5If we normalize to either up or down quark abundance (assume isoscalar composition of matter) instead,
there is a relative factor of 3 which will need to be incorporated accordingly.

6For neutral Earth matter, there are 2 nucleons (one proton and one neutron) per electron. For neutral
solar matter, there is one proton for one electron, and ✏↵� = ✏e↵� + 2✏u↵� + 2✏d↵�
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• Conservative (use most stringent constraint in individual NSI terms)

• Model-independent, assume uncorrelated errors on 
NSI terms (neutral Earth matter)

Ref: Davidson et al (2003)

which, for neutral Earth matter, leads to

|✏↵�| <

0

@
4.2 0.33 3.0
0.33 0.068 0.33
3.0 0.33 21

1

A
. (5)

Note that the values mentioned in Eq. (5) are larger by one or two orders of magnitude
than the overly restrictive bounds of Eq. (3), which, of course, need not be applicable.

Apart from the model independent theoretical bounds, two experiments have used the
neutrino data to constrain NSI parameters which are more restrictive. The SK NSI search in
atmospheric neutrinos crossing the Earth found no evidence in favour of NSI and the study
led to upper bounds on NSI parameters [32] given by |✏µ⌧ | < 0.033, |✏⌧⌧�✏µµ| < 0.147 (at 90%
CL) in a two flavour hybrid model [5]7. The o↵-diagonal NSI parameter ✏µ⌧ is constrained
�0.20 < ✏µ⌧ < 0.07 (at 90% CL) from MINOS data in the framework of two flavour neutrino
oscillations [33,34]. It should be noted, though, that the derivation of these bounds (the SK
one in particular [32]) hinge upon certain assumptions. The primary theoretical assumption
relates to the simplification of the system onto a (hybrid) two-flavour scenario. Within the
SM paradigm, this approximation is expected to be a very good one. The situation changes
considerably, though, once NSI are introduced. As we shall see shortly, the major e↵ect of
NSI accrues through matter e↵ects (even in the limit of the ⌫e decoupling entirely). However,
there exists a nontrivial interplay between such e↵ects and the corresponding matter e↵ects
induced by canonical three-flavour oscillations. Consequently, approximations pertaining to
the neutrino mixing matrix can significantly alter conclusions reached about NSI. Similarly,
the very presence of NSI can leave its imprint in the determination of neutrino parameters. A
second set of imponderables relate to statistical and systematic uncertainties, including but
not limited to earth density and atmospheric neutrino profiles. Thus, it is quite conceivable
that the constraints quoted by the SK collaboration could be relaxed to a fair degree,
though perhaps not to the extent of those in Eq. (5). In view of this, and following several
other studies [35], we will use a value of |✏↵�| = 0.15 (for the parameters ✏µ⌧ , ✏eµ and ✏e⌧ )
in our oscillogram diagrams. This value is eminently in agreement with Eq. (5). Note,
though, that this choice is essentially to aid visual appreciation of the di↵erences in the
oscillogram structures wrought by NSI. Indeed, the experimental sensitivities that we shall
be deriving are comparable to (and often significantly better than) those achieved by the SK
collaboration. Furthermore, we shall not be taking recourse to two-flavour simplifications
to reach such sensitivities. Additionally, the allowed ranges of NSI parameters have been
recently extracted using global analysis of neutrino data in Ref. [36].

3 Neutrino oscillation probability in matter with NSI

The purpose of the analytic expressions presented here is to understand the features in
the probability in the presence of NSI. All the plots presented in this paper are obtained
numerically by solving the full three flavour neutrino propagation equations using the PREM
density profile of the Earth, and the latest values of the neutrino parameters as obtained
from global fits (see Table 1).

7The SK collaboration uses a di↵erent normalization (nd) while writing the e↵ective NSI parameter (see
Eq. (2)) and hence we need to multiply the bounds mentioned in Ref. [32] by a factor of 3.
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What are the consequences of these 
subdominant NSI terms for CP-violation 
studies at long baselines ?


M. Masud, A. Chatterjee, P. Mehta, J. Phys. G (2016) [1510.08261] ; 
M. Masud and P. Mehta, Phys. Rev. D (2016) [1603.01389] 
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Impact of collective NSI : CP asymmetry
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Event rates (collective NSI)
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Figure 2: Combined e↵ect of three NSI terms ("eµ, "e⌧ , "ee) in the electron appearance and muon disap-
pearance probability as a function of � (for fixed E and L for DUNE, NOvA and T2K). The solid black
curve represents SI while the dashed black curve represents NSI for the particular choice of absolute value
of NSI parameters as mentioned in the legend. The grey band shows the spread when in addition the NSI
phases are varied in the allowed range i.e., �eµ,�e⌧ 2 [�⇡,⇡].

where x0
µe

can be found in Ref. [51] for SI. We note that the (first) peak condition for P
µe

is given by �L/2 ' ⇡/2 and therefore for a given �, the peak (dip) of P
µe

is shifted by
an amount ⇡/2 w.r.t. P

µµ

(see Eq. 10 and 11). For SI, Eq. 9 leads to P
µe

(0) = a
µe

+ c
µe

and P
µe

(±⇡) = a
µe

� c
µe

. From the plot, we see that P
µe

(0) ⇠ P
µe

(±⇡) and this implies
that c

µe

' 0. Note also that the maxima/minima will be at � = ±⇡/2 from Eq. 9. If
we keep the relevant NSI phases to zero, the dashed (dotted) curves corresponding to NSI
can go on either side of the solid curve for SI. For SI, Eq. 10 leads to P

µµ

(0) = a
µµ

+ c
µµ

and P
µµ

(±⇡) = a
µµ

� c
µµ

. Note also that the maxima/minima will be at � = 0 or ⇡ from
Eq. 10. For the diagonal parameter "

ee

, for both P
µe

and P
µµ

, the e↵ect is like a uniform
enhancement (reduction) of the probability values from the SI case depending upon the sign
of "

ee

.

In Fig. 2, the collective impact of NSI terms is shown for three di↵erent experiments at
di↵erent fixed energies relevant to those experiments. The largest e↵ect of NSI terms can
be seen for P

µe

and for DUNE and it diminishes as we go to T2K. For P
µµ

, the e↵ect is
similar for all the three experiments so the baseline does not seem to play much role here.
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2.2 Neutrino Three-Flavor Mixing, CP Violation and the Mass Hierarchy 27

of producing and detecting ‹· ’s, the oscillation modes ‹µ,e æ ‹e,µ provide the most promising
experimental signatures of leptonic CP violation.

For ‹µ,e æ ‹e,µ oscillations that occur as the neutrinos propagate through matter, as in terrestrial
long-baseline experiments, the coherent forward scattering of ‹e’s on electrons in matter modifies
the energy and path-length dependence of the vacuum oscillation probability in a way that de-
pends on the magnitude and sign of �m2

32. This is the Mikheyev-Smirnov-Wolfenstein (MSW)
effect [71,72] that has already been observed in solar-neutrino oscillation (disappearance) experi-
ments [73,74,75,76]. The oscillation probability of ‹µ,e æ ‹e,µ through matter, in a constant density
approximation, keeping terms up to second order in – © |�m2

21|/|�m2
31| and sin2 ◊13, is [77,55]:

P (‹µ æ ‹e) ≥= P (‹e æ ‹µ) ≥= P0 + Psin ”¸ ˚˙ ˝
CP violating

+Pcos ” + P3 (2.12)

where

P0 = sin2 ◊23
sin2 2◊13

(A ≠ 1)2 sin2[(A ≠ 1)�], (2.13)

P3 = –2 cos2 ◊23
sin2 2◊12

A2 sin2(A�), (2.14)

Psin ” = –
8Jcp

A(1 ≠ A) sin � sin(A�) sin[(1 ≠ A)�], (2.15)

Pcos ” = –
8Jcp cot ”CP

A(1 ≠ A) cos � sin(A�) sin[(1 ≠ A)�], (2.16)

and where
� = �m2

31L/4E, and A =
Ô

3GF Ne2E/�m2
31.

In the above, the CP phase ”CP appears (via Jcp) in the expressions for Psin ” (the CP-odd term)
which switches sign in going from ‹µ æ ‹e to the ‹µ æ ‹e channel, and Pcos ” (the CP-conserving
term) which does not. The matter effect also introduces a neutrino-antineutrino asymmetry, the
origin of which is simply the presence of electrons and absence of positrons in the Earth.

Recall that in Equation 2.2, the CP phase appears in the PMNS matrix through the mixing of
the ‹1 and ‹3 mass states. The physical characteristics of an appearance experiment are therefore
determined by the baseline and neutrino energy at which the mixing between the ‹1 and ‹3 states
is maximal, as follows:

L(km)
E‹(GeV) = (2n ≠ 1)fi

2
1

1.27 ◊ �m2
31(eV2) (2.17)

¥ (2n ≠ 1) ◊ 510 km/GeV (2.18)

where n = 1, 2, 3... denotes the oscillation nodes at which the appearance probability is maximal.

The dependences on E‹ of the oscillation probability for the LBNE baseline of L =1,300 km are
plotted on the right in Figures 2.3 and 2.4. The colored curves demonstrate the variation in the ‹e

appearance probability as a function of E‹ , for three different values of ”CP.

The Long-Baseline Neutrino Experiment

⌫µ ! ⌫e

⌫µ ! ⌫µ

for the first oscillation maximum (minimum) in the appearance (disappearance) channel.
We note that E = 1.5 GeV, L = 810 km for NOvA and E = 0.6 GeV, L = 295 km for
T2K (and also T2HK) also lead to �L ⇠ ⇡. Also, r

A

L ⇠ O(1) for the range of the E and
L values considered here.

It is interesting to note that matter (or propagation) NSI obey unitarity (while source and
detector NSI do not) so e↵ectively we still have an overall unitary matrix that diagonalises
the e↵ective Hamiltonian in presence of matter NSI and obeys

X

i

Û
↵i

Û?

�i

= �
↵�

(6)

where Û is the unitary matrix that diagonalizes the Hamiltonian in Eq. 1.

Hd = Û † Hf Û , (7)

where the elements Hd ii are the eigenvalues of Hf .

As far as the constraints on NC NSI parameters are concerned, we refer the reader to
Ref. [24, 30] for more details. After taking the constraints from neutrino experiments into
account, the NSI parameters are constrained as follows

|"
↵�

| <

0

@
4.2 0.3 0.5
0.3 0.068 0.04
0.5 0.04 0.15

1

A . (8)

The NSI phases are unconstrained and can lie the allowed range, '
↵�

2 (�⇡, ⇡) (see Ta-
ble. 1).

2.2 CP phase dependence in P
µe

and P
µµ

We consider appearance (⌫
µ

! ⌫
e

) and disappearance (⌫
µ

! ⌫
µ

) channels that are relevant
in the context of accelerator-based neutrino oscillation experiments considered in the present
work. Rather than delving into the detailed expressions, we note that [8, 47, 48] that the
oscillation probabilities for di↵erent channels can be expressed in terms of the CP-even and
CP-odd terms both in case of vacuum and matter with SI 2 as

1. ⌫
µ

! ⌫
e

and ⌫̄
µ

! ⌫̄
e

:

P
µe

= a
µe

+ b
µe

sin � + c
µe

cos �

P
µ̄ē

= ā
µe

� b̄
µe

sin � + c̄
µe

cos � (9)

� ! �� for antineutrinos and the coe�cients can be found in Ref. [48]. Thus, P
µe

contains linear polynomials of sin � and cos �.

2. ⌫
µ

! ⌫
µ

and ⌫̄
µ

! ⌫̄
µ

:

P
µµ

' a
µµ

+ c
µµ

cos �

P
µ̄µ̄

' ā
µµ

+ c̄
µµ

cos � (10)
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Û
↵i

Û?
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.

/ [P true

µµ

� P test

µµ

]2 � [P true

µ̄µ̄

� P test

µ̄µ̄

]2 ,

= min
0,⇡

⇢
[c

µµ

cos �
true

� c
µµ

cos �|0,⇡]2 + [c̄
µµ

cos �
true

� c̄
µµ

cos �|0,⇡]2
�

. (16)

Note that both �2
app

and �2
dis

depend on cos �
true

while �2
app

also depends on sin �
true

. The
presence of sin �

true

term in the �2
app

ensures that the appearance channel contributes dom-
inantly to the CP violation sensitivity. The total �2 when appearance and disappearance
channels are combined is given by

�2
tot

/ min
0,⇡

⇢
[b

µe

sin �
true

+ c
µe

cos �
true

� c
µe

cos �|0,⇡]2

+
⇥
�b̄

µe

sin �
true

+ c̄
µe

cos �
true

� c̄
µe

cos �|0,⇡
⇤2

+ [c
µµ

cos �
true

� c
µµ

cos �|0,⇡]2 + [c̄
µµ

cos �
true

� c̄
µµ

cos �|0,⇡]2
�

(17)

In order to quantify the e↵ects due to CP violation, another quantity called CP fraction
f(� > 3) is often used. This refers to the fraction of � values for which CP violation can be
determined above a particular value of significance (here, 3�). Being a fraction, f(� > 3)
naturally lies between 0 and 1.

All the plots presented in this paper are obtained by using General Long baseline Experiment
Simulator (GLoBES) and related software [54–57] which numerically solves the full three
flavour neutrino propagation equations using the PREM [58] density profile of the Earth7,
and the latest values of the neutrino parameters as obtained from global fits [25, 61, 62].
Unless stated otherwise, we assume NH as the true hierarchy in all the plots.

3 Results

3.1 CP sensitivity : impact of individual and collective NSI terms at DUNE

In order to clearly understand the impact of the NSI terms, we first take only one parameter
non-zero at a time. We show the e↵ect of that particular parameter on CP sensitivity in
the appearance (⌫

µ

! ⌫
e

) as well as the disappearance (⌫
µ

! ⌫
µ

) channels. We also show
the case with the two channels combined.

Before we describe the impact of a particular NSI parameter (i.e. "
eµ

) we would like to
point out that there are two e↵ects responsible for altering the value of the �2 which compete
with each other :

(a) Decrease in �2 due to additional test values - NSI introduces more number of param-
eters in the sensitivity analysis. If marginalization is carried out over more number
of test parameters, it results in a decreased value of �2. This is purely a statistical
e↵ect.

7We use the matter density as given by PREM model. In principle, we can allow for uncertainity in the
Earth matter density in our calculations but it would not impact our results drastically [59,60].

10

cos �|0,⇡ 6= 0

sin �|0,⇡ = 0

Sensitivity to CP violation

⌫µ ! ⌫e ⌫µ ! ⌫µ ⌫µ ! ⌫e + ⌫µ ! ⌫µ
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Figure 8: CP violation sensitivity at T2K, NOvA, and T2K+NOvA+DUNE for collective NSI case
and SI as a function of true �.

m away from the point of neutrino production are used to monitor the neutrino flux.
The ⌫

µ

beam peaks at E ⇠ 0.6 GeV which is close to the first oscillation maximum of
P
µe

. The proton beam power is 770 kW with proton energy of 50 GeV for 3 years (in
⌫ mode) + 3 years (in ⌫̄ mode) which corresponds to a total exposure of 8.3 ⇥ 1020

protons on target (p.o.t) per year.

NOvA: The NOvA experiment has a baseline of 810 km and the detector is placed at
an o↵-axis (0.8 degrees) location. NOvA stands for NuMI O↵-axis ⌫

e

Appearance
experiment. An intense beam of neutrinos (mainly ⌫

µ

or ⌫̄
µ

) produced by firing pro-
tons from Fermilab Main Injector on a graphite target. ⌫

µ

(⌫̄
µ

) beamline is directed
towards a Totally Active Scintillator Detector (TASD) of fiducial mass 14 kton placed
in Ash River, Minnesota. This o↵-axis narrow-width beam peaks at ⇠ 1.6 GeV which
is the energy at which ⌫

µ

! ⌫
e

oscilaltion sees a maximum. A 0.3 kton near detector
is located at the FermiLab site to monitor the un-oscillated neutrino flux. The ex-
periment will be running in ⌫ mode for 3 years and ⌫̄ mode for 3 years with a NuMI
beam power of 0.7 MW and 120 GeV proton energy, corresponding to 6.0⇥ 1020 p.o.t
per year.
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CPV sensitivity - DUNE, T2HK
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Figure 6: CP sensitivity for collective NSI terms at DUNE.

Having described the e↵ect of o↵-diagonal NSI terms, we now address the impact of the
diagonal ones - "

ee

, "
µµ

, "
⌧⌧

. We show the impact of the three diagonal NSI parameters ("
ee

,
"
µµ

and "
⌧⌧

) in Fig. 5. The e↵ect of "
µµ

is very small as it is the most constrained parameter
(Eq. 8). For the choice of values of the NSI parameters, the CP sensitivity sees a drop most
likely due to the statistical e↵ect (a) dominating in these cases.

After understanding the impact of individual diagonal as well as o↵-diagonal NSI terms, we
now address the collective e↵ect of the most influential NSI terms as far as CP sensitivity
is concerned. In Fig. 6, we show the collective impact of the three terms (|"

ee

|, |"
eµ

|, |"
e⌧

|)
which show the largest impact when considered in isolation. We note that when the NSI
terms are small, the associated phases of the NSI terms (even if taken collectively) do
not contribute in an observable manner to (b) and (a) dominates. However when we take
somewhat larger values, we see the interplay of the the two e↵ects (a) and (b) with the
possibility of second e↵ect (b) overtaking the first (a) as we go from small to large values
keeping the marginalisation range intact.

We summarize the impact of NSI on the CP violation sensitivity at long baselines as shown
in Fig. 6 for DUNE. If we compare the solid and dashed black curves, we note that for
small values of parameters (0.01, 0.01, 0.1) NSI brings down the �2 from ⇠ 5� to ⇠ 3� at
� ⇠ ±⇡/2 for the case of zero NSI phases. The impact of true non-zero NSI phases can
be seen in the form of grey bands for the choice of moduli of the NSI terms. For larger
values of parameters (0.07, 0.07, 0.7) NSI can drastically alter the �2 not only at � ' ±⇡/2
(SI, maximum) but at almost all values of � including at � = 0,±⇡ if we allow for phase
variation. For some particular choice of the NSI moduli and phases, we note that in this
case, the �2 decreases from ⇠ 5� to ⇠ 2.5� or increases to ⇠> 5.5� not only at � ' ±⇡/2 but
for most values of �. This can lead to a misleading inference that CP is violated even when
we have CP conservation in the SI case (� = 0,±⇡). Here the phases have a bigger impact
which can be seen as widening of the grey bands as we go from smaller to larger moduli of
NSI terms.
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Figure 9: CP violation sensitivity at T2HK for collective NSI case and SI as a function of true �.

DUNE: The DUNE experiment has a baseline of 1300 km and the detector is placed at
an on-axis location. A new, high intensity, neutrino beam will be directed towards
a LArTPC located at Homestake at a distance of 1300 km. The ⌫

µ

beam peaks at
E ⇠ 2.5 GeV which is close to the first oscillation maximum of P

µe

. This facility
is designed for operation at a proton beam power of 1.0 MW, with proton energy of
120 GeV that will deliver 1021 p.o.t. in ⇠ 200 days per calendar year. To have the
LArTPC cross-sections, we have scaled the inclusive charged current cross sections of
water by 1.06(0.94) for the ⌫(⌫̄) case.

T2HK: The T2HK experiment has a baseline of 295 km and the detector is placed at
the same o↵-axis (0.8 degrees) location as in T2K. The idea is to upgrade the T2K
experiment, with a much larger detector (560 kton fiducial mass) located in Kamioka
so that much larger statistics is ensured. T2HK will run for 1 year (in ⌫ mode) + 3
years (in ⌫̄ mode). The proton beam power is 7.5 MW with proton energy of 30 GeV
that will deliver 1.6⇥ 1022 p.o.t. per year.

The detailed detector characteristics and systematic errors are listed in Table 2. In Table 3,
we list the energy integrated events 8 for the four experiments (using appearance and dis-
appearance channels) for neutrinos as well as antineutrinos for NH. One striking feature to
note is that the events in the disappearance channel are much larger than in the appearance
channel. This is due to the fact that the maximum value that P

µµ

takes is close to 1 while
P
µe

at best goes up to ⇠ 0.1. The larger detector size of T2K compensates for the shorter
baseline when compared to the smaller detector of NOvA with a longer baseline and the
eventrates for the two experiments are comparable. The event rates are some what larger for
DUNE as it has a bigger detector in comparison to NOvA. But, T2HK with its massive
detector overcomes the limitation of baseline being short and gives the maximum number
of events.

The expected sensitivity o↵ered by di↵erent experiments (singly or combined) is illustrated
in Figs. 6, 8 and 9. Fig. 6 shows the CP violation sensitivity for DUNE. In Fig. 8, we
show the CP sensitivity for T2K, NOvA and a combination of T2K, NOvA and DUNE.

8Energy range for the various experiments is mentioned in Sec. 2.3
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Figure 9: CP violation sensitivity at T2HK for collective NSI case and SI as a function of true �.

DUNE: The DUNE experiment has a baseline of 1300 km and the detector is placed at
an on-axis location. A new, high intensity, neutrino beam will be directed towards
a LArTPC located at Homestake at a distance of 1300 km. The ⌫

µ

beam peaks at
E ⇠ 2.5 GeV which is close to the first oscillation maximum of P

µe

. This facility
is designed for operation at a proton beam power of 1.0 MW, with proton energy of
120 GeV that will deliver 1021 p.o.t. in ⇠ 200 days per calendar year. To have the
LArTPC cross-sections, we have scaled the inclusive charged current cross sections of
water by 1.06(0.94) for the ⌫(⌫̄) case.

T2HK: The T2HK experiment has a baseline of 295 km and the detector is placed at
the same o↵-axis (0.8 degrees) location as in T2K. The idea is to upgrade the T2K
experiment, with a much larger detector (560 kton fiducial mass) located in Kamioka
so that much larger statistics is ensured. T2HK will run for 1 year (in ⌫ mode) + 3
years (in ⌫̄ mode). The proton beam power is 7.5 MW with proton energy of 30 GeV
that will deliver 1.6⇥ 1022 p.o.t. per year.

The detailed detector characteristics and systematic errors are listed in Table 2. In Table 3,
we list the energy integrated events 8 for the four experiments (using appearance and dis-
appearance channels) for neutrinos as well as antineutrinos for NH. One striking feature to
note is that the events in the disappearance channel are much larger than in the appearance
channel. This is due to the fact that the maximum value that P

µµ

takes is close to 1 while
P
µe

at best goes up to ⇠ 0.1. The larger detector size of T2K compensates for the shorter
baseline when compared to the smaller detector of NOvA with a longer baseline and the
eventrates for the two experiments are comparable. The event rates are some what larger for
DUNE as it has a bigger detector in comparison to NOvA. But, T2HK with its massive
detector overcomes the limitation of baseline being short and gives the maximum number
of events.

The expected sensitivity o↵ered by di↵erent experiments (singly or combined) is illustrated
in Figs. 6, 8 and 9. Fig. 6 shows the CP violation sensitivity for DUNE. In Fig. 8, we
show the CP sensitivity for T2K, NOvA and a combination of T2K, NOvA and DUNE.

8Energy range for the various experiments is mentioned in Sec. 2.3
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Figure 8: CP violation sensitivity at T2K, NOvA, and T2K+NOvA+DUNE for collective NSI case
and SI as a function of true �.

m away from the point of neutrino production are used to monitor the neutrino flux.
The ⌫

µ

beam peaks at E ⇠ 0.6 GeV which is close to the first oscillation maximum of
P
µe

. The proton beam power is 770 kW with proton energy of 50 GeV for 3 years (in
⌫ mode) + 3 years (in ⌫̄ mode) which corresponds to a total exposure of 8.3 ⇥ 1020

protons on target (p.o.t) per year.

NOvA: The NOvA experiment has a baseline of 810 km and the detector is placed at
an o↵-axis (0.8 degrees) location. NOvA stands for NuMI O↵-axis ⌫

e

Appearance
experiment. An intense beam of neutrinos (mainly ⌫

µ

or ⌫̄
µ

) produced by firing pro-
tons from Fermilab Main Injector on a graphite target. ⌫

µ

(⌫̄
µ

) beamline is directed
towards a Totally Active Scintillator Detector (TASD) of fiducial mass 14 kton placed
in Ash River, Minnesota. This o↵-axis narrow-width beam peaks at ⇠ 1.6 GeV which
is the energy at which ⌫

µ

! ⌫
e

oscilaltion sees a maximum. A 0.3 kton near detector
is located at the FermiLab site to monitor the un-oscillated neutrino flux. The ex-
periment will be running in ⌫ mode for 3 years and ⌫̄ mode for 3 years with a NuMI
beam power of 0.7 MW and 120 GeV proton energy, corresponding to 6.0⇥ 1020 p.o.t
per year.
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Figure 7: The dependence of CP sensitivity on the value of ✓23 and �m2
31 varied in the allowed range.

The black curve is for ✓23 = 45 degrees and for our reference setup (provides a significance of atleast 3� for
⇠ 55% of � values).

3.2 Dependence on ✓23 and �m2
31

The variation in CP sensitivity due to di↵erent values of ✓23 and �m2
31 in the allowed range

is shown in Fig. 7 for SI and NSI cases (zero NSI phases). For ✓23, as can be seen from the
solid curves for SI, the significance (in presence of diagonal and o↵-diagonal NSI) decreases
almost uniformly for all values of � as ✓23 becomes larger. This can be understood from
Eqs. 9 [48] and 12. The P

µe

increases with ✓23 and therefore the �2 decreases. For no
extra phases, we expect the sensitivity in the presence of NSI to be lower than the SI case
due to the statistical e↵ect. For �m2

31, the solid curves for SI show that the significance
does not change significantly for all values of �

CP

as �m2
31 is varied. Once again this can

be understood from Eqs. 9 [48] and 12. The true value of �m2
31 does not impact P

µe

and
therefore the �2 remains almost the same.

3.3 Comparison with other experiments

We now discuss how various currently running and future experiments that will aid in
determining the CP violation sensitivity in conjunction with DUNE or in isolation. Before
we go on, we give a brief description of the experiments that are sensitive to the appearance
(⌫

µ

! ⌫
e

) channel as well as the disappearance (⌫
µ

! ⌫
µ

) channel.

T2K: The T2K experiment has a baseline of 295 km and the detector is placed at an o↵-
axis (2.5 degrees) location. An intense beam of neutrinos (mainly ⌫

µ

or ⌫̄
µ

) produced in
the J-PARC accelerator facility in Tokai are directed towards the Super-Kamiokande
detector (22.5 kton fiducial mass) situated in Kamioka. The near detectors located 280
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Figure 10: The CP fraction f(� > 3) for which the sensitivity to CP violation is greater than 3� as a
function of exposure for SI and NSI case assuming NH. The three plots correspond to three di↵erent NSI
parameters taken one at a time with full phase variation. The red, green and blue shaded regions correspond
to di↵erent values of "eµ and "e⌧ .

In Fig. 9, we show the CP violation sensitivity for T2HK. We note that T2HK o↵ers
CP sensitivity that is competitive with DUNE individually as well as T2K, NOvA and
DUNE combined (SI and NSI both). This can be ascribed to the high statistics o↵ered by
the HK. Near the peak, we note that it can go upto ⇠ 8� for SI and ⇠> 5� for NSI (zero
phases). Another intriguing feature from T2HK panel is that the NSI phases do not have
as dramatic e↵ect as seen for DUNE when the NSI terms are large - this can be seen as
shrinking of the grey regions in Fig. 9 (top panel, right most plot). This is due to the fact
that the baseline of 295 km is way too short for matter e↵ects (SI and NSI both) to develop
and play a significant role9. This demonstrates the complementarity of bigger detectors
(T2HK) vis-a-vis the long baselines involved (DUNE) where no clear demarkation of CP
conserving (� = 0,±⇡) and CP violating values of � was noticed.

3.4 Optimal exposure for CP violation discovery

The previous set of plots were obtained by keeping the total exposure fixed for a given
experimental configuration. The maximum value of f(� > 3) guides the choice of optimal
exposure for CP violation discovery. Let us see how the choice of optimal exposure in case
of SI is arrived at. We have already noted that the CP violation sensitivity as a function of
� has a double peak structure for SI due to the vanishing of the sensitivity at CP conserving
values of � (= 0,±⇡). Therefore it is expected that none of the experiments considered in
the present work can lead to a 100% coverage in � in the SI case. This no longer holds in
presence of NSI.

In Fig. 10, we show the CP fraction for which the sensitivity to CP violation exceeds 3� as
a function of exposure, labelled as f(� > 3). Let us first understand the SI case, we note
that f(� > 3) rises from 0 to ⇠ 0.4 as a function of exposure initially as we go from 50�150
kt.MW.yr but saturates to a value f(� > 3) ' 0.5�0.55 as we go to exposures beyond ⇠ 350
kt.MW.yr. Increasing the exposure further does not change this value drastically beyond
f(� > 3) ' 0.5. This is not unexpected as we have already noticed that it is challenging to

9Similar feature can also be seen from the T2K panel in Fig. 8.

18

• SI

Above 3 sigma, 
CPV can be 
resolved for ~0.55 
of delta values 

• Off-diagonal NSI

Above 3 sigma, CPV 
can be resolved for a 
broad range of values 
0.25-1 (non-diagonal 
NSI terms) due to 
additional phases

• Diagonal NSI

Above 3 sigma, CPV 
can be resolved for a 
range of values, but 
not exceeding 0.55
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Figure 11: The CP fraction for which the sensitivity to CP violation is greater than 3� as a function of
baseline for SI and NSI case. The black and blue solid curves correspond to the di↵erent systematics assumed
for SI. The three plots correspond to three NSI parameters taken one at a time. The green (magenta) band
corresponds to the choice of nominal (optimal) systematics with full phase variation for the o↵-diagonal NSI
parameters while the green (magenta) dashed line corresponds to "ee for nominal (optimal) systematics.

The impact of di↵erent assumptions on systematics can be seen in Fig. 11. The nominal set
of systematics is mentioned in Table 2. The black solid curve represents our nominal choice
of systematics given in Table 2 while the blue solid curve is for an optimal choice mentioned
in the legend [10]. The green (magenta) band corresponds to NSI case for o↵-diagonal
parameters "

eµ

, "
e⌧

with full phase variation for nominal (optimal) choice of systematics.
The green (magenta) dashed curve is for "

ee

for nominal (optimal) choice of systematics.

It can be seen that f(� > 3) nearly reaches its maximum (⇠ 0.55) possible value at around
1300 km for SI (see Fig. 11). This implies that for the given configuration of the far
detector planned for DUNE (see Table 2), the optimal distance to be able to infer the
highest fraction of the values of the CP phase is ⇠ 1300 km. Clearly, even in case of SI,
better systematics is expected to lead to a larger f(� > 3) for a given baseline, say at 1300
km - it changes from ⇠ 0.55 to ⇠ 0.71. For the SI case, better systematics ensures better
detectability of CP violation quantified in terms of fraction f(� > 3) and at the same time,
does not alter the optimal baseline choice for CP violation sensitivity. In case of NSI, the
green (magenta) band show the e↵ect of two choices of systematics and there is an overlap
between them as well as with the SI values. These aspects play a crucial role in altering

the choice of best baseline for CP violation sensitivity. However, in presence of NSI, for
the choice of NSI phases representing the top (bottom) edge of the green or magenta band
(we have used the dashed green or magenta lines to depict the diagonal NSI terms), the
optimal choice of baseline (L

opt

) that maximizes the CP fraction changes as a function of
systematics (see Table 5).

4 Discussion and Conclusion

With tremendous progress on both theoretical and experimental fronts in neutrino oscillation
physics, we have fairly good idea of the neutrino masses and mixing pattern. The proposed
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CP fraction is maximum 
at ~1300 km

NSI term Nominal systematics (green) Optimal systematics (magenta)
NSI SI NSI SI

f(� > 3) L
opt

f(� > 3) L
opt

f(� > 3) L
opt

f(� > 3) L
opt

km km km km
|"

eµ

| = 0.04 0.85 (1800� 2500) 0.52 (1300) 0.97 (1500� 3000) 0.71 ( 1300)
0.49 (800� 1300) 0.59 (800� 1300)

|"
e⌧

| = 0.04 0.65 (2000� 3000) 0.52 (1300) 0.77 (1300� 1500) 0.71 (1300)
0.37 (1800� 2000) 0.40 (1800� 2000)

"
ee

= 0.04 0.43 (1900� 2100) 0.52 (1300) 0.52 (1900� 2100 ) 0.71 (1300)

Table 5: Maximum f(� > 3) and optimal baseline range (L
opt

) for the two di↵erent choices
of systematics (see Fig. 11) for NH. The values with larger (smaller) f(� > 3) correspond
to upper (lower) edge of the respective bands.

long baseline experiment, DUNE aims to hunt for the most sought after parameter, the CP
violating phase �. In the era of precision, the subdominant e↵ects due to new physics such
as NSI, need to be incorporated carefully. We have discussed the impact of propagation
NSI on the standard procedure to determine the CP violation sensitivity at long baseline
experiments. The impact of NSI (including new CP phases) on the CP measurements at
DUNE using only the appearance channel was studied analytically as well as numerically
at the level of probability and event rates in Ref. [36]. In the present article, we perform a
full-fledged sensitivity analysis using appearance and disappearance channels and quantify
the e↵ects at the level of �2 and CP fraction f(� > 3). We considered the NSI terms
individually first and then a combination of the dominant ones. We also compare the
CP sensitivities with other ongoing experiments - T2K , NOvA and a future generation
experiment - T2HK.

We have found a general rule (in Sec. 3.1) that allows us to comprehend the results very
nicely. There are two opposing e↵ects at work - one is purely statistical which tends to
decrease the CP sensitivity while the other is due to inclusion of more CP phases - which
tends to increase the CP sensitivity. For diagonal NSI terms, only the first e↵ect dominates
while for the o↵-diagonal NSI terms, under some favourable conditions, the additional CP
phases may enhance the sensitivity to CP violation as well as the value of CP fraction.

It is shown that DUNE is sensitive not only to CP violation e↵ects due to the genuine SI
CP phase [10] but also to additional (fake and genuine) CP violating e↵ects arising due to
moduli and phases of the NSI parameters. Finally, we can infer the following :

• The NSI parameters "
eµ

, "
e⌧

and "
ee

show the largest e↵ect in the P
µe

channel. While
the NSI parameters "

µ⌧

, "
µµ

and "
⌧⌧

are expected to contribute to the P
µµ

channel, we
do not consider them here because the disappearance channel by itself contributes very
little to the CP sensitivity owing to the absence of CP odd term in the probability.
Even if we consider these parameters, we find that the "

µµ

is constrained very strongly
(Eq. 8). We have checked the impact of "

µ⌧

on the CP violation sensitivity using both
appearance and disappearance channels and it is found to be negligible for DUNE.
The e↵ect of "

⌧⌧

is shown in Fig. 5 and is smaller in comparison to "
ee

. For these
reasons, we consider "

eµ

, "
e⌧

and "
ee

as the dominant NSI parameters a↵ecting CP
sensitivity.
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What are the consequences of these 
subdominant NSI terms for mass ordering 
studies at long baselines ?
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Shape of the sensitivity curve

.

Ref : M. Masud and P. Mehta, Phys Rev D (2016); 1606.05662



Mass ordering sensitivity at long baselines

.

3σ

5σ

|εe μ|, |εe τ|, |εe e| = 0.01, 0.01, 0.1

σ
 =

 √
(Δ

 χ
2
)

0

1

2

3

4

5

6

δ / π (true)

−1 −0.5 0 0.5 1

|εe μ|, |εe τ|, |εe e| = 0.04, 0.04, 0.4

δ / π (true)

−1 −0.5 0 0.5 1

NoVA (3+3) SI

NSI (true φeμ = φeτ = 0)

NSI (true φeμ, φeτ ∈ [-π : π])

|εe μ|, |εe τ|, |εe e| = 0.07, 0.07, 0.7

δ / π (true)

−1 −0.5 0 0.5 1

5σ

|εe μ|, |εe τ|, |εe e| = 0.01, 0.01, 0.1

σ
 =

 √
(Δ

 χ
2
)

0

0.5

1

1.5

2

2.5

3

δ / π (true)

−1 −0.5 0 0.5 1

|εe μ|, |εe τ|, |εe e| = 0.04, 0.04, 0.4

δ / π (true)

−1 −0.5 0 0.5 1

T2K (3+3) SI

NSI (true φeμ = φeτ = 0)

NSI (true φeμ, φeτ ∈ [-π : π])

|εe μ|, |εe τ|, |εe e| = 0.07, 0.07, 0.7

δ / π (true)

−1 −0.5 0 0.5 1

Ref : M. Masud and P. Mehta, Phys Rev D (2016); 1606.05662



Mass ordering sensitivity at long baselines

.
3σ

5σ

|εe μ|, |εe τ|, εe e = 0.01, 0.01, ±0.1

σ
 =

 √
(Δ

 χ
2
)

0

5

10

15

20

25

δ / π (true)

−1 −0.5 0 0.5 1

|εe μ|, |εe τ|, εe e = 0.04, 0.04, ±0.4

δ / π (true)

−1 −0.5 0 0.5 1

DUNE (5+5)

|εe μ|, |εe τ|, εe e = 0.07, 0.07, ±0.7

δ / π (true)

−1 −0.5 0 0.5 1

SI

NSI (true φeμ = φeτ = 0; εee > 0)

NSI (true φeμ, φeτ ∈ [-π : π]; εee < 0)

NSI (true φeμ, φeτ ∈ [-π : π]; εee > 0)

Ref : M. Masud and P. Mehta, Phys Rev D (2016); 1606.05662



Conclusions

• Neutrino oscillations have been confirmed beyond doubt. Goals have changed from 
“measuring the angles and mass-squared differences and establishing neutrino 
oscillation” —> precision era. 

• Effects at sub-leading level such as NSI in propagation can confuse the inferences 
about some of the unknowns especially those that heavily rely on the matter effects 
e.g. CP violation or neutrino mass ordering at long baseline experiments such as 
DUNE 

• The primary science goal of DUNE is to determine CP violation and the ancillary 
science program is to study sub-dominant effects such as NSI. The two are 
intimately related and feedback the inferences in either sector.

• It could be that different new physics scenarios could give rise to similar distortion 
in shape of asymmetry curves, so it calls for the need to isolate fine differences 
between them where the role of a precise near detector may be crucial.


