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OUTLINE

? The good news
I The surge of activity of the past two decades—which may be

referred to as the NuInt age —has led to the development of highly
refined models of lepton-nucleus interactions

I Several models appear to be capable to provide an accurate
description of selected electron- and/or neutrino-scattering data

? The bad news
I Models based on different—in some instances even

conflicting—assumptions yield similar results

? Outlook
I Resolving the the degeneracy between different models and

assessing their predictive power will require the analysis of
electron scattering data other than the inclusive cross section
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GREEN’S FUNCTION MONTE CARLO (GFMC)

I Longitudinal (left) and transverse (right) electromagnetic
responses of 12C at |q| = 570 MeV
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I Full ab initio calculation based on a realistic nuclear Hamiltonian
• Inherently non relativistic
• Does not allow to pin down the role of all different reaction

mechanisms
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VALENCIA MODEL
I Single and multinucleon emission included. Long range

correlations included within the Random Phase Approximation
(RPA)

I Flux intergated double differential neutrino-carbon cross section
in the CCQE channel
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FIG. 9. Some 2p2h contributions to the polarization propagators. Solid (dashed) lines denote nucleon (pion) propagators.
Double lines represent ∆(1232) propagators. Solid lines pointing to the right (left) denote particle (hole) states.

been found [100] with the RGF model with empirical OP briefly covered in the previous section. This has been
achieved with a model that takes into account those multinucleon contributions that can be ascribed to the particle

0.5 1 1.5
T
µ
 (GeV)

0

0.5

1

1.5

2

d2 σ
/d

T µ
 d

 c
os
θ µ

 (1
0-3

8  c
m

2  /G
eV

) Full Model
Full QE (with RPA)
Multinucleon
No RPA, No Multinuc.
No RPA,No Multin., MA=1.32

0.80 < cos θ
µ
< 0.90

MA=1.049 GeV

FIG. 10. ν-12C double differential cross section averaged over the MiniBooNE flux [128] as a function of the muon kinetic
energy and for the 0.80 < cos θµ < 0.90 angular bin [139]. The thick solid line stands for the full model (RlFG+RPA+2p2h).
The dashed, dotted and dash-dotted lines show partial results for only RlFG, RlFG+RPA and only 2p2h, respectively. All
these curves are obtained with MA = 1.049 GeV while the thin solid line is calculated with the RlFG and MA = 1.32 GeV.
The data of Ref. [23] have been rescaled by a factor 0.9 (compatible with flux uncertainties).
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MARTINI-ERICSON-MARTEAU MODEL
I Single and multinucleon emission and RPA correlations included
I Flux intergated double differential neutrino-carbon cross section

in the CCQE channel compared to MiniBooNE data

M. MARTINI, M. ERICSON, AND G. CHANFRAY PHYSICAL REVIEW C 84, 055502 (2011)
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FIG. 1. (Color online) Regions of the quasielastic response of a
Fermi gas. For relativistic kinematics, see shaded area (red) delimited
by the two corresponding continuous lines. In the nonrelativistic case
the horizontal arrow shows the two limiting lines (black). The central
dashed lines show the position of the quasielastic peak in the two
cases. The remnant three lines represent the neutrino hyperbolas
defined by Eq. (2) for a muon kinetic energy Tµ = 250 MeV and
three muon emission angles: cosθ = 0.9 [dot-dot-dashed line (blue)],
cosθ = 0 [dot-dashed line (green)], and cosθ = −0.9 [dotted line
(turquoise)].

integrated quasielastic cross sections. Our previous conclusion
on the role played by the multinucleon processes in the axial
anomaly is not an artifact of the nonrelativistic treatment of

our earlier works. Then we give the single differential cross
sections, that is, integrated over the muon energy, or the muon
angle, and the Q2 distribution not only for charged current
(CC) but also for neutral current (NC).

II. ANALYSIS OF DIFFERENTIAL CROSS SECTIONS

For a given “quasielastic” event the muon energy Eµ (or
kinetic energy Tµ) and its emission angle θ are measured. The
neutrino energy Eν is unknown. In the experimental analysis
a specific assumption is made concerning the quasielastic
character of the one muon events. Nuclear cross sections are
naturally expressed in terms of the nuclear responses, functions
of the energy and momentum transferred to the nuclear system,
ω = Eν − Eµ, and q = |"q| = | "pν − "pµ|. These are the natural
variables but they are not the measured quantities. For each
value of Eµ and θ several values of ω, hence of Eν = Eµ + ω,
are possible. The expression of the double differential cross
section in terms of the measured quantity is

d2σ

dTµdcosθ

= 1∫
%(Eν)dEν

∫
dEν

[
d2σ

dωdcosθ

]

ω=Eν−Eµ

%(Eν). (1)

In the numerical evaluations we use the neutrino flux %(Eν)
from Ref. [1].

The cross section of the right-hand side of Eq. (1), as
expressed in terms of the nuclear responses [3], is nonvanishing
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FIG. 2. (Color online) MiniBooNE flux-averaged CC “quasielastic” νµ-12C double differential cross section per neutron for several values
of muon kinetic energy as a function of the scattering angle. (Dashed curve) Pure quasielastic (1p-1h) cross section calculated in RPA, (solid
curve) with the inclusion of np-nh component. The experimental MiniBooNE points are taken from Ref. [1].
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SPECTRAL FUNCTION FORMALISM
I e+ 12C→ e′ +X cross section computed within the impulse

approximation including ground state correlations and final
state interactions
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SUPERSCALING APPROACH
I Phenomenological scaling analysis of electron scattering data in

the single-nucleon knock-out sector. Contribution of
Meson-Exchange Currents (MEC) added within the Relativistic
Fermi Gas Model (RFGM)

I Flux intergated double differential neutrino-carbon cross section
in the CCQE channel
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FIG. 6. (Color online) MiniBoone flux-folded double differen-
tial cross section per target nucleon for the νµ CCQE process
on 12C displayed versus the µ− kinetic energy Tµ for various
bins of cos θµ obtained within the SuSAv2+MEC approach.
QE and 2p-2h MEC results are also shown separately. Data
are from [1].
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PREAMBLE: THE LEPTON-NUCLEUS CROSS-SECTION

? Double differential cross section of the process `+A→ `′ +X

dσA
dΩk′dk′0

∝ LµνWµν
A

I Lµν is fully specified by the lepton kinematical variables
I The determination of the nuclear response tensor

Wµν
A =

∑
N

〈0|JµA
†|N〉〈N |JνA|0〉δ(4)(P0 + k − PN − k′)

JµA =
∑
i

jµi +
∑
j>i

jµij + . . .

requires a consistent description of the target initial and final states
and the nuclear current. Fully consistent ab initio calculations are
feasible in the non relativistic regime

I In the kinematical regime in which relativistic effects become
important, approximations—involving both the reaction
mechanism and the underlying dynamics—are needed.
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THE ONE-PARTICLE–ONE-HOLE (1p1h) SECTOR

I Consider a 12C target as an example

|N〉 = |p, 11C〉 , |n, 11B〉
I The infamous Relativistic Fermi Gas Model (RFGM)

Wµν
A =

k k + q

q

q

No nucleon-nucleon interaction, mean field described by a constant
binding energy ε. Oriented lines represent the Green’s functions

Gh(k,E) =
θ(k − kF )

E − e0(k) + iη
, Gp =

θ(kF − k)
E − e0(k)− iη

where η = 0+, kF is the Fermi momentum and

e0(k) =
√
k2 +m2 + ε

8 / 21



I Including nucleon-nucleon interactions in the initial state

Wµν
A = k k + q

q

q

Gh(k,E) = = + + + . . .

I Note thatthe bare nucleon-nucleon interaction cannot be used for
perturbation theory in the basis of eigenstates of the
non-interacting system. Eiher the interaction or the basis states
need to be “renormalized” using G-matrix or Correlated Basis
Function (CBF) perturbation theory.
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I In principle, the effects of final state interactions may be taken
into account in a consistent fashion, using

Wµν
A =

k k + q

q

q

However, in general the propagation of the outgoing nucleon,
described by the Green’s function Gp(k + q, E), requires the use
of a relativistically consistent scheme, such as the eikonal
approximation

I The 1p1h sector has been extensively studied measuring the
cross section of the process

e+A→ e′ + p+ (A− 1)B
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THE TWO-PARTICLE–TWO-HOLE SECTOR

I Interactions couple the 1h (1p) states of the residual nucleon to
2h1p (2p1h) states, in which one of the spectator nucleons is
excited to the continuum. This mechanism leads to the
appearance of 2p2h final states

|N〉 = |pp, 10B〉 , |np10C〉 . . .
I In addition, 2p2h states appear through their coupling to the

ground state

Wµν
A =

q

q

I These contributions exhibit a specific energy dependence, and
give rise to a characteristic event geometry

I Note: in interacting many body systems the excitation of 2p2h
states does not require a two-nucleon current
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MESON-EXCHANGE CURRENTS (MEC)

I Two-nucleon currents naturally couple the nuclear ground state
to 2p2h final states, e.g. through the processes

Wµν
A =

q

q

q

q

as well as through similar processes involving the excitation of
the ∆-resonance

I Note: amplitudes involving one- and two-body currents and the
same final state state give rise to interference terms
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LONG-RANGE CORRELATIONS
? At low momentum transfer the space resolusion of the neutrino

becomes much larger than the average NN separation distance
(∼ 1.5 fm), and the interaction involves many nucleons

← λ ∼ q−1 →

d

? Write the nuclear final state as a superposition of 1p1h states

|n〉 =

N∑
i=1

Ci |pihi)

Wµν
A =

+ + + . . .
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THE DEGENERACY ISSUE: e–A SCATTERING

I Same data. Different theoretical models, based on different
assumptions. Comparable agreement between theory and
experiment

where dσ denotes the cross section in the absence of FSI,
the effects of which are accounted for by the folding
function

fqðωÞ ¼
ffiffiffiffiffiffi
TA

p
δðωÞ þ ð1 −

ffiffiffiffiffiffi
TA

p
ÞFqðωÞ: ð10Þ

The above equations show that inclusion of FSI involves
three elements: (i) the real part of the optical potential UV
extracted from proton-carbon scattering data [28], respon-
sible for the shift in ω, (ii) the nuclear transparency TA
measured in coincidence ðe; e0pÞ reactions [29], and (iii) a
function FqðωÞ, sharply peaked at ω ¼ 0, whose width is
dictated by the in-mediumNN scattering cross section [27].
A comprehensive analysis of FSI effects on the electron-

carbon cross sections has been recently carried out by the
authors of Ref. [15]. In this work we have followed closely
their approach, using the same input.
Figure 3 illustrates the effects of FSI on the electron-

carbon cross section in the kinematical setups of Fig. 2. In
Fig. 3(a), both the pronounced shift of the quasielastic peak
and the redistribution of the strength are clearly visible, and
significantly improve the agreement between theory and
data. For larger values of Q2, however, FSI play a less
relevant, in fact almost negligible, role. This feature is
illustrated in Fig. 3(b), showing that at beam energy Ee ¼
1.3 GeV and scattering angle θe ¼ 37.5 deg, correspond-
ing toQ2 ∼ 0.5 GeV2, the results of calculations carried out

with and without inclusion of FSI give very similar results,
yielding a good description of the data.
Note that, being transverse in nature, the calculated two-

nucleon current contributions to the cross sections exhibit a
strong angular dependence. At Ee ¼ 1.3 GeV, we find that
the ratio between the integrated strengths in the 1p1h and
2p2h sectors grows from 4% at electron scattering angle
θe ¼ 10 deg to 46% at θe ¼ 60 deg.
The results of our work show that the approach based on

the generalized factorization ansatz and the spectral func-
tion formalism provides a consistent framework for a
unified description of the electron-nucleus cross section,
applicable in the kinematical regime in which relativistic
effects are known to be important.
The extension of our approach to neutrino-nucleus

scattering, which does not involve further conceptual
difficulties, may offer new insight into the interpretation
of the cross section measured by the MiniBooNE
Collaboration in the quasielastic channel [30,31]. The
excess strength in the region of the quasielastic peak is
in fact believed to originate from processes involving
two-nucleon currents [32–34], whose contributions are
observed at lower muon kinetic energy as a result of the
average over the neutrino flux [35]. The strong angular
dependence of the two-nucleon current contribution may
also provide a clue for the understanding of the differences
between the quasielastic cross sections reported by the
MiniBooNE Collaboration and the NOMAD Collaboration
[36], which collected data using neutrino fluxes with
very different mean energies: 880 MeV and 25 GeV,
respectively [35].
As a final remark, it has to be pointed out that a clear-cut

identification of the variety of reaction mechanisms con-
tributing to the neutrino-nucleus cross section will require a
careful analysis of the assumptions underlying different
models of nuclear dynamics. All approaches based on the
independent particle model fail to properly take into
account correlation effects, leading to a significant reduc-
tion of the normalization of the shell-model states [37], as
well as to the appearance of sizable interference terms in
the 2p2h sector. However, in some instances these two
deficiencies may largely compensate one another, leading
to accidental agreement between theory and data. For
example, the two-body current contributions computed
within our approach turn out to be close to those obtained
within the Fermi gas model.
The development of a nuclear model having the pre-

dictive power needed for applications to the analysis of
future experiments—most notably the Deep Underground
Neutrino Experiment (DUNE) [38]—will require that the
degeneracy between different approaches be resolved. A
systematic comparison between the results of theoretical
calculations and the large body of electron scattering data,
including both inclusive and exclusive cross sections, will
greatly help to achieve this goal.

(a)

(b)

FIG. 3. (a) Double differential electron-carbon cross section at
beam energy Ee ¼ 680 MeV and scattering angle θe ¼ 36 deg.
The dashed line corresponds to the result obtained neglecting FSI,
while the solid line has been obtained within the approach of
Ref. [15]. The experimental data are taken from Ref. [24].
(b) Same as (a) but for Ee ¼ 1300 MeV and θe ¼ 37.5 deg.
The experimental data are taken from Ref. [25].
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I Spectral function approach.
Correlations and MEC
consistently taken into
account. Significant
interference terms included

0 0.1 0.2 0.3 0.4 0.50

500

1000

1500

2000

2500

0.58

0.6

0.62

0.64

0.66

0.68

E=680 MeV, θ=60
o
, qQE=610 MeV/c

0 0.1 0.2 0.3 0.4 0.50

5000

10000

15000

20000

25000

0.65

0.7

0.75

0.8

E=2130 MeV, θ=18
o
, qQE=640 MeV/c 

0.1 0.15 0.2 0.25 0.3 0.350

100

200

300

400

500

600

700

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
E=440 MeV, θ=145

o
, qQE=650 MeV/c 

0 0.2 0.4 0.6 0.80

5000

10000

15000

20000

25000

30000

0.7

0.8

0.9

E=2500 MeV, θ=15
o
, qQE=658.6 MeV/c 

0.2 0.4 0.60

1000

2000

3000

4000

0.65

0.7

0.75

0.8

E=1108 MeV, θ=37.5
o
, qQE=674.6 MeV/c 

0.1 0.2 0.3 0.40

2000

4000

6000

8000

10000

12000

14000

16000

0.7

0.72

0.74

0.76

E=2020 MeV, θ=20
o
, qQE=700.2 MeV/c 

0.2 0.4 0.6 0.80

500

1000

1500

2000

0.8

0.85

0.9

0.95

E=1299 MeV, θ=37.5
o
, qQE=792 MeV/c 

0.2 0.3 0.4 0.50

100

200

300

400

500

0.65

0.7

0.75

0.8

0.85

E=560 MeV, θ=145
o
, qQE=795 MeV/c

0.2 0.3 0.4 0.5 0.6 0.7 0.80

250

500

750

1000

0.9

0.95

1

1.05

1.1

E=1501 MeV, θ=37.5
o
, qQE=917 MeV/c 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

1000

2000

3000

1

1.25

1.5

1.75

E=3595 MeV, θ=16
o
, qQE=1044.3 MeV/c 

0 0.2 0.4 0.6 0.8 10

500

1000

1500

2000

2500

1

1.1

1.2

1.3

1.4

1.5

E=4045 MeV, θ=15
o
, qQE=1113.8 MeV/c 

0.2 0.4 0.6 0.80

100

200

300

400

500

600

1.2

1.25

1.3

1.35

1.4

1.45

E=3595 MeV, θ=20
o
, qQE=1316 MeV/c 

0.4 0.8 1
0

50

100

150

0.6
ω (GeV)

1.5

1.55

1.6

1.65

1.7

1.75

1.8
E=3595 MeV, θ=25

o
, qQE=1640 MeV/c 

0.6 0.8 1 1.2 1.4 1.6 1.8 2
ω (GeV)

0

10

20

30

40

50

2

2.1

2.2

2.3

2.4

2.5
E=4045 MeV, θ=30

o
, qQE=2247 MeV/c 

2.4 2.6 2.8 3
ω (GeV)

0

1

2

3

4

5

3.35

3.4

3.45

3.5

3.55

3.6
E=4045 MeV, θ=55

o
, qQE=3432.2 MeV/c 

FIG. 7. As for Fig. 5, but now for kinematics corresponding to the highest qQE values considered.
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I SuSAv2+MEC approach.
Superscaling analysis, MEC
added within the RFGM.
Interference terms not
included

14 / 21



THE DEGENERACY ISSUE: ν–A SCATTERING

I Flux integrated double-differential cross section in the CCQE
channel predicted by the Valencia Model and the SuSav2+MEC
approach
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FIG. 9. Some 2p2h contributions to the polarization propagators. Solid (dashed) lines denote nucleon (pion) propagators.
Double lines represent ∆(1232) propagators. Solid lines pointing to the right (left) denote particle (hole) states.

been found [100] with the RGF model with empirical OP briefly covered in the previous section. This has been
achieved with a model that takes into account those multinucleon contributions that can be ascribed to the particle
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The dashed, dotted and dash-dotted lines show partial results for only RlFG, RlFG+RPA and only 2p2h, respectively. All
these curves are obtained with MA = 1.049 GeV while the thin solid line is calculated with the RlFG and MA = 1.32 GeV.
The data of Ref. [23] have been rescaled by a factor 0.9 (compatible with flux uncertainties).
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FIG. 6. (Color online) MiniBoone flux-folded double differen-
tial cross section per target nucleon for the νµ CCQE process
on 12C displayed versus the µ− kinetic energy Tµ for various
bins of cos θµ obtained within the SuSAv2+MEC approach.
QE and 2p-2h MEC results are also shown separately. Data
are from [1].

I Note that RPA contributions, which turn out to be significant
within the Valencia Model to the nuclear responsibility do not
exhibit y-scaling. Therefore, they are not included in the
SuSav2+MEC analysis
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WHY WORRY?
I Compare the results of the Valencia Model to those obtained

using the spectral function formalism

I The effects of RPA corrections appear to be comparable to the
quenching of the normalization of shell model states, arising
from ground-state correlations. How do we assess the predictive
power of the different models?
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THE (e, e′p) REACTION

I Consider the process e+A→ e′ + p+ (A− 1) in which both the
outgoing electron and the proton, carrying momentum p′, are
detected in coincidence

e e′

p′

q, ω

I In the absence of final state interactions (FSI), the initial energy
and momentum of the knocked out nucleon can be identified
with the measured missing momentum and energy, respectively

pm = p′ − q , Em = ω − Tp′ − TA−1 ≈ ω − Tp′

I FSI effects can be taken into account as corrections
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(e, e′p) CROSS SECTION
? Low missing energy region: single nucleon knock out from shell

model states
QUASI-FREE (e, e’p) 473 

8% PG 180 M&J/” 

MISSIffi ENERGY (McV) 

Fig. 9. Missing energy spectra from “C(e, e’p), (a) 0 S P 5 36 MeV/c, (b) SO $ P 5 180 MeV/c and 
(c) 0 s P s 60 MeV/c for 20 5 E 5 60 MeV. 

3OG E< 50 MeV 

0 50 la, ls0 2co 250 300 
RECOIL MOMENTUM (M&/c) 

Fig. 10. Momentum ~s~ibution from “C(e, e’p); (a) I5 s E 4 21.5 MeV and (b) 30 5 E s 50 MeV. 
The solid and dashed lines represent DWIA and PWIA ~lcula~ons respectively, with nonfiction 

obtained by a fit to the data. 

shells of “C. The lp, shell, at a separation energy of 16 MeV (fig. 9), exhibits 
the expected I = 1 distribution having a zero at P = 0 and a single maximum at 
PW 100 MeVJc. The two lines occurring in S(E, P) at 18 and 21 MeV correspond 

I Contribution of shell model states
clearly seen. Normalizations, or
spectroscopic strengths, significantly
lower than shell model predictions

I Momentum
distributions of carbon
p− and s−states
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The solid and dashed lines represent DWIA and PWIA ~lcula~ons respectively, with nonfiction 

obtained by a fit to the data. 

shells of “C. The lp, shell, at a separation energy of 16 MeV (fig. 9), exhibits 
the expected I = 1 distribution having a zero at P = 0 and a single maximum at 
PW 100 MeVJc. The two lines occurring in S(E, P) at 18 and 21 MeV correspond 
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WHERE IS THE MISSING SPECTROSCOPIC STRENGTH?

? The missing strength is pushed to the two-nucleon emission
sector by processes involving high momentum nucleons, with
|pm| >∼ 400 MeV. The relevant missing energy scale can be easily
understood considering that momentum conservation requires

Em = Ethr +
√
|pm|2 +m2 −m

? Scattering off a nucleon belonging to a correlated pair entails a
strong energy-momentum correlation
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(e, e′p) WITHIN THE SPECTRAL FUNCTION APPROACH

I After correcting for
FSI, both shape and
normalization of
the valence p-state
of carbon are
accurately
reproduced using
the CBF spectral
function

I The correlation strenght at large missing
energy and missing momentum is also
consistently accounted for

2

From the experimental information available up to
now, the depopulation of IP strength at low k, E is un-
ambiguous. Determining the total correlated strength is
not so direct, however. The total correlated strength is a
factor of 4 or so (see below) smaller than the IP strength,
and the determination of this strength by taking the dif-
ference of the experimental IP strength with unity suffers
from the unfavorable propagation of uncertainties in the
experimental measurement and theoretical interpretation
of the (e, e′p) data. A direct measurement of the corre-
lated strength is needed.

Correlated strength from (e,e’p). According
to calculations that solve the Schrödinger equation for a
realistic N-N interaction, the correlated strength is ex-
pected to be identifiable at high nucleon momenta k and
high removal energies E; there, the values of the nuclear
spectral function S(k, E), the probability to find in the
nucleus nucleons of given k and E, is increased by orders
of magnitude relative to IP descriptions. The correlated
strength also contributes to the region dominated by the
IP strength, but there it cannot be isolated via (e,e’p).
While initial searches for high-k components [9, 10] were
restricted to low–lying states, it has been understood for
some time that the SRC produce strength at high k and
E simultaneously [3, 11].

Locating this strength at large k and E is difficult.
The correlated strength (perhaps 20%) is spread over a
very large range in E (one to several hundred MeV ), so
the density of S(k, E) is very low. Processes other than
the single-step proton knockout — the basis of the Plane
Wave Impulse Approximation (PWIA) interpretation of
(e, e′p) — can contribute. Strength can be moved to large
E (appearing as large “missing energy” Em) by processes
such as multi-nucleon knockout or π-production, where
the additional particle is not observed. Unless, by the
choice of kinematics, this contribution can be reduced
to a size where it can be corrected for by a calculation,
identification of the correlated strength is not possible.

A systematic study [12] of (e, e′p) data [13, 14, 15, 16,
17, 18, 19] has shown that the best chance for an identi-
fication of the correlated strength occurs for data taken
in parallel kinematics, i.e. with the initial nucleon mo-
mentum "k parallel to the momentum transfer "q (most
available data have been taken in (nearly) perpendicular
kinematics). This study has also shown that multi-step
processes have a small impact at large momentum trans-
fer. Similar observations could be drawn from a recently
published (e,e’p) experiment performed at 4He [20]. This
Letter describes the results of the first experiment de-
signed explicitly to study SRC via a measurement of the
strength at large k and E under optimal kinematics.

Experiment. The experiment was performed in Hall
C at Jefferson Lab employing three quasi-parallel and
two perpendicular kinematics at a q >∼ 1 (GeV/c) (for a
detailed discussion see [21]). Electrons of 3.3 GeV energy
and beam currents up to 60 µA were incident upon 12C,

EmPm_allkins_pap.eps
kin3

kin5

kin4

FIG. 1: Coverage of the Em,pm-plane by the runs taken in
parallel kinematics shown in a cross section times phase space
plot.(Due to the large momentum acceptance of the spectrom-
eters, part of the data (green) are for θkq > 45◦).

27Al, 56Fe and 197Au targets (in the present Letter we
limit the discussion to 12C). The scattered electrons were
detected in the HMS spectrometer (central momenta 2 -
2.8 GeV/c), the protons were detected in the SOS spec-
trometer (central momenta 0.8 - 1.7 GeV/c). Fig. 1 gives
the kinematical coverage for the parallel kinematics.

Data on Hydrogen were taken as check, to determine
the various kinematical offsets and to verify the recon-
struction of particle trajectories and the normalizations.
Data for the IP region were also taken. The resulting
proton transparency agrees with previous determinations
[22] and modern calculations [23, 24]. The overall accu-
racy of the resulting cross sections is ±6%.

The spectra of all important observables have been
compared to the results of the Monte Carlo simulation
package SIMC of the Hall C collaboration; excellent
agreement is found. The comparison also shows that the
resolution in Em (pm) is 5 MeV (10 MeV/c).

The raw data were analyzed using two different proce-
dures, both based on an iterative approach and a model
spectral function. In one, the phase space is taken from a
Monte Carlo simulation of the experiment, and the spec-
tral function is determined from the acceptance corrected
cross sections. Radiative corrections are taken into ac-
count according to [25]. The approach has been verified
on special sets of data where radiative corrections are
large. The other is based on a bin-by-bin comparison of
experimental and Monte Carlo yield, where the Monte
Carlo simulates the known radiative processes, multiple
scattering and energy loss of the particles, spectrome-
ter transfer matrices, focal plane detector efficiencies, the
software cuts applied etc. The parameters of the model
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Figure 6. Momentum distribution of the data
(circles) compared to the theory of refs. [3] (dots),
[4] (solid) and [24] (dashed). The lower integra-
tion limit is chosen as 40 MeV, the upper one to
exclude the ∆ resonance.

Experiment 0.61 ±0.06
Greens function theory [3] 0.46
CBF theory [2] 0.64
SCGF theory [4] 0.61

Table 1
Correlated strength (quoted in terms of the num-
ber of protons in 12C.)

shape of the spectral function for C, Al, and Fe
ist quite similar. For Au a larger contribution
from the broader resonance region is obvious and
the maximum of the spectral function is shifted
to higher Em. The correlated strength for Al, Fe
and Au is 1.05, 1.12 and 1.7 times the strength
for C normalized to the same number of pro-
tons. This increase cannot be solely explained
by rescattering but MEC’s have probably taken
into account. Another contribution may be com-
ing from the stronger tensor correlations in asym-
metric nuclear matter [26,27].
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SUMMARY AND OUTLOOK

? Bottom line: an accurate description of the two-nucleon emission
sector sector, providing ∼ 20% of the nuclear cross section in the
quasi elastic channel, is only relevant to the extent to which the
remaining ∼ 80%, arising from processes single-nucleon knock
out processes, is fully understood. In this context, consistency is
a key issue

? Studies of the (e, e′p) cross section, giving access to the nuclear
spectral function, have greatly contributed to identify processes
involving different nuclear final states

? The availability of (e, e′p) data must be exploited to resolve the
degeneracy between model of neutrino nucleus-interactions
based on different—or even conflicting—assumptions on both
nuclear dynamics and the relevant reaction mechanisms
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INTERACTIONS EFFECTS

I nuclear mean field→ cross section shifted
I nucleon-nucleon correlations→ coupling between 1p1h and

2p2h final states. Peak quenched, appearance of tails at both low
and high energy transfer, ω.
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EFFECTS OF LONG-RANGE CORRELATIONS
I |q|-evolution of the density-response of isospsin-symmetric

nuclear matter. Calculation carried out within CBF using a
realistic nuclear hamiltonian.

|q| ≈ 480 MeV

|q| ≈ 300 MeV

|q| ≈ 60 MeV

308 O. Benhar, N. Farina / Physics Letters B 680 (2009) 305–309

The FG ph states, while being eigenstates of the HF Hamiltonian

HHF =
∑

k

ek, (12)

with ek given by Eq. (10), are not eigenstates of the full nuclear
Hamiltonian. As a consequence, there is a residual interaction V res
that can induce transitions between different ph states, as long as
their total momentum, q, spin and isospin are conserved.

We have included the effects of these transitions, using the
Tamm Dancoff (TD) approximation, which amounts to expanding
the final state in the basis of one 1p1h states according to [27]

| f ) = |q, T S M) =
∑

i

cT S M
i |pihi, T S M), (13)

where pi = hi +q, S and T denote the total spin and isospin of the
particle–hole pair and M is the spin projection along the quantiza-
tion axis.

At fixed q, the excitation energy of the state | f ), ω f , as well as
the coefficients cT SM

i , are determined solving the eigenvalue equa-
tion

H| f ) = (HHF + V res)| f ) = (E0 + ω f )| f ), (14)

where E0 is the ground state energy. Within our approach this
amounts to diagonalizing a Nh × Nh matrix whose elements are

H T S M
ij = (E0 + epi − ehi )δi j + (hi pi, T S M|V eff|h j p j, T S M). (15)

In TD approximation, the response can be written as

S(q,ω) =
∑

T S M

Nh∑

n=1

∣∣∣∣∣

Nh∑

i=1

(
cT S M

n
)

i(hi pi, T S M|O eff(q)|0)

∣∣∣∣∣

2

× δ
(
ω − ωT S M

n
)
, (16)

where (cT SM
n )i denotes the i-th component of the eigenvector be-

longing to the eigenvalue ωT SM
n .

The diagonalization has been performed using a basis of Nh ∼
3000 ph states for each spin–isospin channel. The appearance of an
eigenvalue lying outside the particle hole continuum, correspond-
ing to a collective excitation reminiscent of the plasmon mode of
the electron gas, is clearly visible in panel (A) of Fig. 3, showing the
TD response at |q| = 0.3 fm−1 for the case of Fermi transitions. For
comparison, the result of the correlated HF approximation is also
displayed. Note that the sharp peak arises from the contributions
of particle–hole pairs with S = 1, T = 0.

In order to identify the kinematical regime in which long range
correlations are important, we have studied the TD response in
the region 0.3 ! |q| ! 3.0 fm−1. The results show that at |q| "
1.2 fm−1 the peak corresponding to the collective mode in the
S = 1, T = 0 channel is still visible, although less prominent. How-
ever, it disappears if the exchange contribution to the matrix ele-
ment of the effective interaction appearing in the rhs of Eq. (15) is
neglected.

The transition to the regime in which short-range correlations
dominate is illustrated in panels (B) and (C) of Fig. 3, showing
the comparison between TD and HF responses at |q| = 1.5 and
2.4 fm−1, respectively.

At |q| = 1.5 fm−1 the peak no longer sticks out, but the effect
of the mixing of ph states with S = 1 and T = 0 is still detectable,
resulting in a significant enhancement of the strength at large ω.
At |q| = 2.4 fm−1 the role of long range correlations turns out to
be negligible, and the TD and correlated HF responses come very
close to one another. The calculation of the response associated
with Gamow–Teller transitions shows a similar pattern.

Fig. 3. Nuclear matter response calculated within the TD (squares) and correlated
HF (diamonds) approximations, for the case of Fermi transitions. Panels (A), (B) and
(C) correspond to |q| = 0.3, 1.5 and 2.4 fm−1, respectively.

5. Conclusions

The CBF formalism employed in our work is ideally suited to
construct an effective interaction starting from a realistic NN po-
tential. The resulting effective interaction, which has been shown
to provide a quite reasonable account of the equation of state of
cold nuclear matter [16], allows for a consistent description of the
weak response in the regions of both low and high momentum
transfer, where different interaction effects are important.

The results of our calculations, obtained including 1p1h final
states, suggest that in addition to the HF mean field, which moves
the kinematical limit of the transitions to 1p1h states well be-
yond the FG value, correlation effects play a major role, and must
be taken into account. While at |q| " 0.5 fm−1 long-range cor-
relations, leading to the appearance of a collective mode outside
the particle–hole continuum, dominate, at |q| # 2.0 fm−1 the most
prominent effect is the quenching due to short-range correlations.

In principle, the uncertainty associated with the truncation of
the space of final states at the 1p1h level can be estimated study-
ing the static structure function S(q) and the sum rules of the
responses [28]. We have verified that the S(q) goes linearly to zero
for vanishing |q|, as required by particle number conservation.

A more quantitative understanding of the role of two particle-
two hole (2p2h) final states can be gained comparing the response
resulting from the approach discussed in the present Letter and
that obtained using the spectral function formalism, applicable in
the impulse approximation regime [24]. The results of Ref. [24]
suggest that the main effect of 2p2h states, which are explicitely
taken into account in the spectral function, is the appearance of a
tail extending to large energy transfer.

As pointed out in Section 2, the differences between our work
and that of Ref. [8] arise from the definitions of both the ef-
fective interaction and the effective operators. Three- and many-
nucleon forces, taken into account in our approach, play a marginal
role at nuclear matter equilibrium density, their inclusion lead-
ing to changes that never exceed 15% in the Fermi TD response

OB and N. Farina, PLB 680 305, (2009)
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