Dark Matter Approach of a Left-Right Symmetric Model

Sanchari Bhattacharyya

University of Calcutta

January 23, 2023

AAPCOS 2023
Saha Institute of Nuclear Physics, Kolkata

Outline

- Introduction
- 2 32121 Model
 - Brief Description
 - Particle Sector
 - Fixing the parameters
 - Masses of the Exotic Particles
- 3 Dark Matter in 32121
 - Direct Detection
 - Relic Density
 - Direct Detection in Two-component DM Scenario
- 4 Conclusion

Introduction

- Standard Model (SM) of particle physics is successful in describing many of the natural phenomena including interactions between elementary particles etc.
- But SM fails to explain some experimentally established phenomena including presence of dark matter (DM) or tiny neutrino mass.
- The incompleteness of SM motivates us to look beyond SM.
- Today we shall investigate such a BSM theory that respects $SU(3)_C \otimes SU(2)_L \otimes U(1)_L \otimes SU(2)_R \otimes U(1)_R$ (32121) local gauge symmetry.
- It is Left-Right (LR) symmetric.
- Its root can be traced back from E_6 GUT.

$$E_6 \longrightarrow 3_C \otimes 3_L \otimes 3_R \longrightarrow 3_C \otimes 2_L \otimes 1_L \otimes 2_R \otimes 1_R \longrightarrow 3_C \otimes 2_L \otimes 1_Y \longrightarrow 3_C \otimes 1_{em}$$

32121 Model: Brief Description

Particle Contents

			N. Charles			
N. P. State B.	191//48	3 _C	2_L	2_R	1 _L	1_R
BI KERTAN	L _L	1	2	1	-1/6	-1/3
第5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\bar{L}_R	1	1	2	1/3	1/6
	\bar{L}_B	1	2	2	-1/6	1/6
Fermions	Īs		1		1/3	-1/3
	Q_L		2	1	1/6	0
	\bar{Q}_R	3	1	2	0	-1/6
	$ar{Q}_{LS}$	3	1		-1/3	
	Q_{RS}	3	1		0	1/3
	ФВ	1	2	2	1/6	-1/6
Higgs	Φ_L		2		1/4	1/4
Bosons	Φ_R	1	1	2	-1/4	-1/4
	Φ5	1	1	1	-1/3	1/3

- Scalars coming from $(1,3,\bar{3})$ representation of $SU(3)^3$.
- Fermions coming from from full 27-plet of E₆. [Q. Shafi, Phys. Lett. B, 79(3), 301-303]
- The above U(1) hypercharge assignments are anomaly free and follow the symmetry breaking pattern of $SU(3)^3 \longrightarrow 32121$.

32121 Model: Particle Sector

Scalar Sector:

$$\Phi_{B} = \begin{pmatrix} \frac{1}{\sqrt{2}} (k_{1} + h_{1}^{0} + i\xi_{1}^{0}) & h_{1}^{+} \\ h_{2}^{-} & \frac{1}{\sqrt{2}} (k_{2} + h_{2}^{0} + i\xi_{2}^{0}) \end{pmatrix},
\Phi_{L} = \begin{pmatrix} h_{L}^{+} \\ \frac{1}{\sqrt{2}} (v_{L} + h_{L}^{0} + i\xi_{L}^{0}) \end{pmatrix}, \Phi_{R} = \begin{pmatrix} \frac{1}{\sqrt{2}} (v_{R} + h_{R}^{0} + i\xi_{R}^{0}) \\ h_{R}^{-} \end{pmatrix}, \Phi_{S} = \frac{1}{\sqrt{2}} (v_{S} + h_{S}^{0} + i\xi_{S}^{0})$$

Fermion Sector:

$$\begin{array}{lcl} L_L & = & \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \ L_R = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}, \ Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \ Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \\ \\ Q_{LS} & = & q_{SL}, \ Q_{RS} = q_{SR}, \ I_S, \ L_B = \begin{pmatrix} N_1 & E_1 \\ E_2 & N_2 \end{pmatrix} \quad \text{and} \quad \tilde{L}_B = \begin{pmatrix} N_2^c & E_2^c \\ E_1^c & N_1^c \end{pmatrix} \end{array}$$

Physical Fields:

Scalars: h^0 , h_2^0 (ξ_2^0), h_L^0 (ξ_L^0), H_R^0 , H_S^0 , H_1^\pm , H_L^\pm . [$h^0 \longrightarrow \text{SM Higgs}$] Fermions: ν , N, L_S , e, u, d, E, Q_S . [ν , e, u, d $\longrightarrow \text{SM Fermions}$] Gauge bosons: Z, γ , Z', A', W, W'. [W, Z, $\gamma \longrightarrow \text{SM Gauge Bosons}$]

32121 Model: Fixing the parameters

- 5 gauge coupling constants, $g_3, g_{2L}, g_{2R}, g_{1L}, g_{1R}$.
 - LR symmetry breaking $\longrightarrow \frac{1}{g_Y^2} = \frac{1}{g_{2R}^2} + \frac{1}{g_{1L}^2} + \frac{1}{g_{1R}^2}$
 - $g_{2L} = g_{2R}$, $g_{1L} = g_{1R}$.
- 5 vacuum expectation values.
 - $k_1 = 246$ GeV (From SM W mass)
 - $v_R > 14.7$ TeV (From direct bound on W' mass)
 - $v_S > 12.61$ TeV (From derived lower mass limit of A' (> 3.5 TeV))
 - $k_2 = 0$ and $v_L = 0$.
- 10 real quartic couplings.
 - The potential must be bounded from below.
 - Accepted only those values who are allowed by the SM Higgs signal strength to $b\bar{b}$ channel.

[SB and A. Datta, Phys. Rev. D 105, 075021]

32121 Model: Masses of the Exotic Particles

The lower mass limits of the exotic patricles of 32121 as derived from the LHC data,

- $m_{h_2^0} = m_{\xi_2^0} > 800$ GeV.
- $m_{H_1^{\pm}} > 720$ GeV. ²
- $m_{F^{\pm}} > 1.089$ TeV. ³
- $m_{A'} > 3.5$ TeV. ⁴
- With the lower limit on v_R , $m_{Z'} > 5.089$ TeV.

Throughout our analysis, the masses of the BSM particles have been set at their lowest limits.

[SB and A. Datta, Phys. Rev. D 105, 075021]

ATLAS Collaboration, Phys. Rev. D 102, 032004 (2020) ATLAS Collaboration, JHEP 06 (2021) 145 ATLAS Collaboration, Phys. Rev. D 99 (2019) 092007 ATLAS Collaboration, JHEP10 (2017) 182

Dark Matter in 32121

Consider a similiar variant of the previous set of hypercharge assignments.

	3 _C	2 _L	2_R	1	1_R
Φ_L	1	2	1	1/4	1/4
Φ_R	1	1	2	-1/4	-1/4

Dark Matter candidates in 32121 model are fermions

Candidates: L_S (a Majorana fermion constructed out of I_S and I_S^c) nd N (a Dirac fermion constructed out of N_1 and N_2^c).

Yukawa Lagrangian

$$\mathcal{L}_{Yukawa} = \mathcal{L}_{Y4} + \mathcal{L}_{Y5} + H.C$$

$$\mathcal{L}_{Y4} = y_{qij} \ \bar{Q}_{iL} \Phi_B Q_{jR} + \tilde{y}_{qij} \ \bar{Q}_{iR} \tilde{\Phi}_B Q_{jL} + y_{lij} \ \bar{L}_{iL} \Phi_B L_{jR} + \tilde{y}_{lij} \ \bar{L}_{iR} \tilde{\Phi}_B L_{jL}$$

$$+ y_{sij} \ \bar{Q}_{iLS} \Phi_S Q_{jRS} + y_{LBij} \ Tr \left[\bar{L}_{iB} \tilde{L}_{jB} \right] \Phi_S^* + y_{BBij} \ Tr \left[\bar{L}_{iB} \tilde{\Phi}_B \right] I_{jS}^c$$

$$\mathcal{L}_{Y5} = \frac{1}{\Lambda} \left[\ y_{LSij} \ \bar{l}_{iS}^{\, c} \Phi_S \Phi_S + y_{SSij} \ \ \text{Tr} \left[\bar{L}_{iB} \Phi_B \right] l_{jS} \Phi_S^* + y_{qSBij} \ \ \bar{Q}_{iLS} \, \text{Tr} \left[\Phi_B^\dagger \tilde{\Phi}_B \right] Q_{jRS} \right]$$

SB and A. Datta, arXiv: [2206.13105]

Fermion Dark Matter: Direct Detection

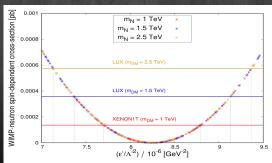
When N is DM candidate

We add a term,

$$\frac{\epsilon'}{\Lambda'^2} \operatorname{\textit{Tr}}[(\bar{\mathsf{L}}_B \gamma^\mu \tau_{\mathsf{a}} \mathsf{L}_B)] \; (\bar{\mathsf{f}}_{\mathsf{L}} \gamma_\mu \tau_{\mathsf{a}} \mathsf{f}_{\mathsf{L}} + \mathsf{L} \leftrightarrow \mathsf{R})$$

The effect of interference between two diagrams may reduce the total scattering cross-section.

Experimental upper limits on DM-nucleon scattering cross-section from XENON, LUX collaborations helps us to find an allowed range of ϵ'/Λ'^2 for different masses of DM.



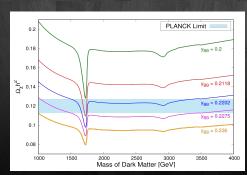
[XENON collab., PRL. 121, 111302 (2018); LUX Collab., PRL. 118, 251302 (2017)

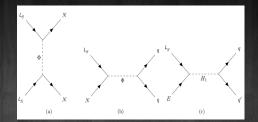
Fermion Dark Matter: Relic Density

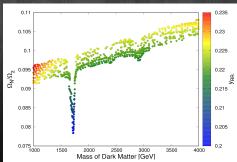
y_{BB} is important in this context.

- ① We consider the case of $y_{BB} \neq 0$ with N and L_S degenerate in mass.
- 2 0.2 $< y_{BB} <$ 0.236 is allowed by PLANCK experiment for $m_{A'} = 3.5$ TeV and $m_{Z'} = 5.89$ TeV.

[SB and A. Datta, arXiv: [2206.13105]]







Direct Detection in Two-comp. DM Scenario

 y_{BB} is important in this context.

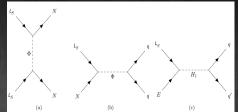
- ① We consider the case of $y_{BB} \neq 0$ with N and L_S degenerate in mass.
- 2 $0.2 < y_{BB} < 0.236$ is allowed by PLANCK experiment for $m_{A'} = 3.5$ TeV and $m_{Z'} = 5.89$ TeV.

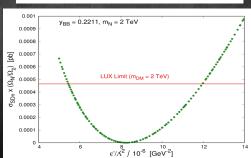
[SB and A. Datta, arXiv: [2206.13105]]

 In case of a two-component DM model, the direct detection cross-section,

$$\sigma = \left(rac{\Omega_{ extit{N}}}{\Omega_{\chi}}
ight)\sigma_{ extit{N}} + \left(rac{\Omega_{ extit{I}_{ extit{S}}}}{\Omega_{\chi}}
ight)\sigma_{ extit{I}_{ extit{S}}}$$

• A new wider range of ϵ'/Λ'^2 we obtain.





Conclusion

- We investigate a LR symmetric gauge model that respects $SU(3)_C \otimes SU(2)_L \otimes U(1)_L \otimes SU(2)_R \otimes U(1)_R$ local gauge symmetry.
- A few assumptions we considered to simplify the large parameter space.
- Using the recent LHC results we could derive lower limits on the masses of some BSM particles.
- Some of them may generate interesting signature at 14 and 27 TeV HL-LHC run.
- 32121 model contains fermion Dark Matter candiates.
- We study a two-component fermion DM scenario.
- We find parameter spaces allowed by PLANCK experiment.
- We also derive limits on the coefficient of effective four-fermi operator from Direct Detection Experiments.
- We are hopeful to explore more with this model.

Thank You

Back Ups

Scalar potential:

$$\mathcal{V} = \mathcal{V}_1 + \mathcal{V}_2$$

where.

$$\begin{split} \mathcal{V}_{1} = & - \mu_{1}^{2} Tr \left(\Phi_{B}^{\dagger} \Phi_{B} \right) - \mu_{3}^{2} \left(\Phi_{L}^{\dagger} \Phi_{L} + \Phi_{R}^{\dagger} \Phi_{R} \right) - \mu_{4}^{2} \Phi_{S}^{\dagger} \Phi_{S} \\ & + \lambda_{1} Tr \left[\left(\Phi_{B}^{\dagger} \Phi_{B} \right)^{2} \right] + \lambda_{3} \left(Tr \left[\Phi_{B}^{\dagger} \tilde{\Phi}_{B} \right] Tr \left[\tilde{\Phi}_{B}^{\dagger} \Phi_{B} \right] \right) \\ & + \alpha_{1} (\Phi_{S}^{\dagger} \Phi_{S})^{2} + \beta_{1} Tr \left[\Phi_{B}^{\dagger} \Phi_{B} \right] (\Phi_{S}^{\dagger} \Phi_{S}) + \gamma_{1} \left[\left(\Phi_{L}^{\dagger} \Phi_{L} \right) + \left(\Phi_{R}^{\dagger} \Phi_{R} \right) \right] (\Phi_{S}^{\dagger} \Phi_{S}) \\ & + \rho_{1} \left[\left(\Phi_{L}^{\dagger} \Phi_{L} \right)^{2} + \left(\Phi_{R}^{\dagger} \Phi_{R} \right)^{2} \right] + \rho_{3} \left[\left(\Phi_{L}^{\dagger} \Phi_{L} \right) (\Phi_{R}^{\dagger} \Phi_{R}) \right] + c_{1} Tr \left[\Phi_{B}^{\dagger} \Phi_{B} \right] \left[\left(\Phi_{L}^{\dagger} \Phi_{L} \right) + \left(\Phi_{R}^{\dagger} \Phi_{R} \right) \right] \\ & + c_{3} \left[\left(\Phi_{L}^{\dagger} \Phi_{B} \Phi_{B}^{\dagger} \Phi_{L} \right) + \left(\Phi_{R}^{\dagger} \Phi_{B}^{\dagger} \Phi_{B} \Phi_{R} \right) \right] + c_{4} \left[\left(\Phi_{L}^{\dagger} \tilde{\Phi}_{B} \tilde{\Phi}_{B}^{\dagger} \Phi_{L} \right) + \left(\Phi_{R}^{\dagger} \tilde{\Phi}_{B}^{\dagger} \tilde{\Phi}_{B} \Phi_{R} \right) \right] \end{split}$$

and,

$$\mathcal{V}_2 = \mu_{BS} \, \mathsf{Tr} \left[\Phi_B^\dagger ilde{\Phi}_B
ight] \Phi_S^* + \mathsf{h.c.}$$

Parameters in \mathcal{V} are real.