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QCD predicts hadrons to quarks and gluons
deconfinement transition at high density and/or
temperature.

The deconfinement transition at high
temperature has been observed in heavy-ion
collisions.

But the presence of quarks at high density
remains unsolved.

One of the naturally occurring laboratories of
the dense matter is the cores of neutron stars.

However, the cores are not directly visible, and
to have any information, we have to model NSs
from the core to the surface and then match
them with observations.

3/ 44



Introduction to NS

Neutron stars are dead stars, produced via
the gravitational collapse of massive stars
(8Mo < M < 25M ) via supernova.

Life Cycle of a Star
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»Mass ~ 1 — 3Mg

>
>
>

> Mag. field ~ 10° — 10'°G

Properties of NS

Radius ~ 10 — 15 km
Density ~ 10'° g/cc

Deriod ~ 1ms — 10s

» Mostly observed as radio pulsars.
» Jocelyn Bell and Anthony Hewish (Nobel prize, 1974)

discovered the first radio pulsar in 1967.

» Soon identified as a highly-magnetized rotating NS.

» More than 2500 pulsars are discovered so far.

» Also observed in x-rays, gammy-rays and optical.



GW: A new window

» On August 2017, LIGO-Virgo collaboration detected first ever
GW from a binary neutron star merger event:. GW170817.

» Subsequent electromagnetic counterparts were detected by
~70 observatories.
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Electromagnetic signatures

Marks the beginning of multi-messenger era of astronomy.



Neutron Star Interior

Quter crust
Atomic nuclei, free electrons

Inner crust
Heavier atomic nuclel, free
neutrons and electrons

Quter core
Quantum liquid where
neutrons, protons and
electrons exist in a soup

Inner core
Unknown ultra-dense
matter. Neutrons and
protons may remain as
particles, break down into
their constituent quarks,

or even become ‘hyperons’.

Atmosphere
Hydrogen, helium, carbon




Building a NS

The structure of a static (i.e., non-rotating) star with
spherical symmetry in General Relativity is described
by the Tolman-Oppenheimer-Volkoff ( TOV) egns:

dp _ _gmlr)etr) <1 L P) ) <1 . 47W3P(T)m(r>> <1 ) 2Gm(r)>_1

dr P2 c’e(r) c2 c2r

dm

% — 47TT2€(T)

P = pressure , &(r) = energy density

»Boundary Conditions:
Pir=0)=PFP.,, m(r=0)=0
Plr=R)=0, m(r=R)=M



P (dyn/cm?)
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» Essential ingredient to solve TOV
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» Each EOS corresponds to a maximum mass
> Stiffer EOS gives larger maximum mass and radius
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EOS is highly uncertain

» Constituents are not known.
> Interaction between constituents are not fully known.
» Uncertainties in the many-body description.

® However, the EOS at two extreme density limits at zero
temperature, are known with a certain degree of accuracy.

® Up to nuclear saturation density, the matter is in the
hadronic phase, and the modern nuclear theory (like chiral
effective field theory) is quite accurate.

® |n the very high-density limit perturbative-QCD (pQCD) tech-
niqgues with quarks and gluons as their degrees of freedom
become reliable.

® This indicates that there is a deconfinement phase transition
from hadrons to quarks happening at densities between
these two limits.



® The cores of neutron stars at their heart bears these
Intermediate densities where phase transition can occur.

EOS is highly model dependent

|

Need to rely on astrophysical observations
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> First breakthrough

Precise mass
Measurement of
massive NS

Excluded soft EOSs

2.01 = 0.04M

Antoniadis et al Sc(/Dence 340 448(2013)
»1.908 = 0.016 M,

Arzoumanian et al ApJS 235 37(2018)

2.08 = 0.07M
Fonseca et al ApJL 915 L12(2021)

2.35 = 0.17M
Romani et al ApJL 934 L17(2022)




P (dyn/cm?)

Equation of State
» Essential ingredient to solve TOV
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We need precise and simultaneous mass-radius
measurements = NICER mission started on 2017.



Tidal deformabillity

» Another significant constraint came from GW170817 with the
measurement of tidal deformability (/\), an EOS-sensitive
guantity:

A; 4 <800 LVC, PRL 119, 161101 (2017)
Ay 4 <580 LVC,PRL121, 161101 (2018)

2
A=\/M°, \= 51@35, ko = love number



* |In 2019, NICER provided the First simutaneous
measurement of mass-radius for PSR J0030+0451.:

M =1.347012 My, R=12.717177km
Riley et al, ApJL 887, L21 (2019)
0.15 1.24
M =1.4470°Ms, R =13.027120 km
Miller et al, ApJL 887, L24 (2019).

* In 2021, another measurement was reported by
analysing NICER + XMM Newton data of PSR

J0740+6620:
R=13.77%Ckm

Miller et al, ApJL 918, L28 (2019).



Quark matter

 Still we can’t say whether an NS core can
shelter quark matter or not.

* |n a recent study we explored the possibilty of
distinguishing between neutron stars and
neutron stars with a quark core (Hybrid stars).

R Mallick, D Kuzur and R Nandi
EpJC 82 512 (2022)



EOS considered

e We considered several Relativistic Mean Field
(RMF) EOS to describe the hadronic part.
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EOS considered

e We considered several Relativistic Mean Field
(RMF) EOS to describe the hadronic part.

* For the quark part we adopt the MIT Bag model



Quark EOS
O MIT Bag model:

4
) = ZQO ,u 5(1—a4) + Begg, 1=u,d,s,e

P=_0
e = —P+Zumi

Qg — Grand potentials of non-interacting Fermi gas
[t — Baryon chemical potential of quarks

B.g — Bag constant
a4 — Interaction parameter
N; — Number density of i-th particle



EOS considered

* We considered several Relativistic Mean Field
(RMF) EOS to describe the hadronic part.

* For the quark part we adopt the MIT Bag model.

* A hybrid star contains hadronic matter at low
densities, pure quark phase at high densities and
hadron-quark mixed phase at intermediate densities.

* The transition density and the extent of the mixed
phase depend on the hadroic EOS and the
parameters of the quark matter EOS.
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C7 /C* does not depend on whether a neutron star contains
guarks or not.
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A linear relationship between the VF and MF exists.
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Z does not change with A 4 .
Z = 0.783 — 0.00003A14 (x4 = 5.850 x 1075)
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* The Q measures the loss of quark content by a rotating star
compared to a static star of the same mass.

* As the rotational velocity increases, its quark content reduces.
* For a specific rotational value, it lies in a range.
* The range increases with the increase in rotational velocity.



0.2}

 For a star rotating with Keplerian velocity, the quark content is
minimum, and the Q value lies in a patch having the bound of
0.224 < Q < 0.514.

* A hybrid star with a quark core must lie within the Q bound to be
stable and not start shedding mass or collapse into a black hole.
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* Interestingly Q” lies in a narrow range between ~ 0.506-0.623
universally across the EoS
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Figure shows how the gravitational mass and radius of a
star changes if a hybrid star is formed via phase transition
from a NS.
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* Although the change in the gravitational mass is relatively
small, the radius shrinks considerably.

* Therefore, as phase transition occurs and a quark core is
formed inside a star, the star becomes more compact.
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* A massive NS after phase transition can become
unstable and probably collapses to a Black Hole.

* For a given EOS one can find the upper bound on mass
and radius M.z and R..it, beyond which it is not possible
to produce a stable hybrid star.



crlt/Rcrlt < 0.18

If a neutron star undergoing phase transition is more
compact it will collapse to a black hole
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Change in the compactness of stars due to
phase transition.

The change in compactness (and thereby the mass) can be
used to estimate the energy released during the phase
transition.



Summary

The presence of quarks inside NS core is still debatable.

It would be very useful to find a EOS indpendent quantity
that can distinguish between NS and hybrid stars.

We found that the ratio C, /C, shows different behavior

for fast rotating NSs compared to fast-rotating HSs and
IS Independent of EoS.

However, it would require unnaturally precise measure-
ment to infer the occurrence of a quark core at the center
ofthe star.

We showed that if there are quarks in NS core, it is
possible to obtain some semi-universal relations
between guantities that quantify the content of quarks.
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